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Abstract—Merkle Tree is a fundamental cryptographic primitive in
Zero-Knowledge Proof (ZKP) protocols, sharing significant computa-
tional workloads with the Number Theoretic Transform (NTT) in zk-
STARK schemes. Merkle Tree is a tree structure where nodes are
primarily generated through hash computations. Among them, Poseidon
Hash, as a ZK-friendly hash function, has emerged as one of the most
widely adopted choices. Therefore, hardware acceleration of building
Merkle Tree based on Poseidon Hash can significantly enhance the
performance of ZKP protocols. We propose AccIMT, a highly resource-
efficient and flexible Poseidon Hash-based Merkle Tree architecture.
Our design employs hardware-software co-design and optimizes the
hashing data flow, resulting in an area-efficient Poseidon Hash engine
that improves modular multiplication resource utilization. Furthermore,
AccIMT uses these engines alongside hierarchical on-chip cache and
optimized task scheduling for building large Merkle Trees. It also
supports flexible parameter configurations for various requirements.
Experimental results show that our proposed Poseidon Hash engine
achieves a 14.3 x speedup compared to the latest FPGA-based work.
By improving resource utilization, it also reduces area usage by 14.8%
compared to unoptimized design. AccIMT achieves up to 1665 x speedup
over software implementations in building Merkle tree, with average
utilization of 95.9% and 99.2% for the two hash engines.

Index Terms—Zero-Knowledge Proof, Merkle Tree, Poseidon Hash,
Hardware Acceleration

I. INTRODUCTION

The Merkle Tree is a key primitive in Zero-Knowledge Proof
(ZKP), a commonly used privacy-preserving algorithm. It is often
utilized in zk-STARK-based ZKP [1] schemes for polynomial com-
mitments. Unlike the Multi-Scalar Multiplication-based commitment
schemes in zk-SNARK [2], Merkle Trees offer higher computational
and spatial efficiency. When building a Merkle Tree, a large sequence
of elements is first hashed to generate leaf nodes, which are then
repeatedly hashed and combined layer by layer until the root node is
obtained. The trend has shifted toward choosing ZK-friendly arith-
metic hash functions like Poseidon Hash [3]. Unlike traditional hashes
such as SHA, Poseidon Hash offers higher computational efficiency
and fewer constraints, making it widely applied in various scenarios
[4]-[6]. In zk-STARK and some newer zk-SNARK schemes, hash
functions—primarily in the form of Merkle Trees—represent the
largest computational workload alongside the Number Theoretic
Transform, with the two accounting for over 65% of total computation
[7]. Poseidon Hash, being more computationally expensive, may fur-
ther increase this proportion. Previously, hardware acceleration efforts
for ZKP mainly focused on Multi-Scalar Multiplication (MSM) [8]—
[11] and the Number Theoretic Transform (NTT) [10]-[12], while
neglecting improvements in hash computations and Merkle Tree.
According to Amdahl’s Law [13], exclusively accelerating MSM
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and NTT would leave ZK system performance severely bottlenecked
by the unoptimized hash operations, which dominate the remaining
computation overhead [14].

However, building a Poseidon Hash-based Merkle Tree presents
significant challenges. One is efficiently managing the computational
workload, as a single Poseidon Hash may require hundreds or
thousands of modular multiplications, while a Merkle Tree can
involve millions of such computations. Another challenge lies in
handling the vast, temporally sparse intermediate data generated
during computation. Despite their space efficiency, Merkle Trees
can produce several gigabits of intermediate data, whose sparse
distribution reduces computational unit utilization. Keeping extensive
intermediate data on-chip is expensive, while frequent transfers to
off-chip storage further impact efficiency.

To address these challenges, accelerating Poseidon Hash-based
Merkle Tree implementations becomes crucial. ZPrize [15] introduces
a track for Poseidon Hash hardware acceleration, and Ingonyama de-
velops ICICLE [16], a cryptographic library optimized for hardware
platforms, including Poseidon Hash-based Merkle Trees. TRIDENT
[17], a Poseidon Hash accelerator for FileCoin on FPGA, delivers
significant performance gains over advanced CPUs. Irreducible also
proposes the first fully pipelined FPGA architecture for ZKP-friendly
Merkle Trees using Poseidon Hash [18].

However, we believe that the above works have limitations that
make them unsuitable as reference paradigms or lack practical
considerations, as detailed below:

« Lack of Flexibility and Generalizability: Their implementa-
tions are often tailored to specific protocols, such as Irreducible’s
approach [18] for Plonky2 and TRIDENT [17] for the FileCoin
protocol.

o Low Resource Utilization: The most expensive modular mul-
tipliers are not fully utilized. We estimate that nearly half of
TRIDENT’s [17] modular multipliers remain idle most of the
time, resulting in reduced area efficiency.

o Imbalanced Performance and Resource Overhead, with Lim-
ited Optimization Strategies: Irreducible’s approach [18] fully
unrolls the Poseidon Hash for optimal performance in 64-bit
Goldilocks fields. However, for ZKP protocols using larger finite
fields, the hardware cost of full unrolling becomes unsustainably
high.

In this paper, we present AccIMT, a highly resource-efficient and
flexible Poseidon Hash-based Merkle Tree architecture. Our proposed
flexible design supports the configuration of several typical param-
eters, catering to diverse application contexts. We optimize the pro-
posed Poseidon Hash engine through software-hardware co-design,
efficiently allocating different types of Poseidon permutations to two
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sub-engines, achieving higher resource utilization than unoptimized
architectures. In Merkle Tree optimization, our approach efficiently
decomposes and schedules tasks, using a limited hierarchical on-chip
cache to build Merkle Trees of various sizes. Although our design
uses a 256-bit data width, it can be adjusted for specific applications.
Our key contributions are:

o We propose a Poseidon Hash engine combining a resource-
efficient partial-round engine with a resource-intensive full-
round engine. We optimize the scheduling of different rounds in
Poseidon Hash across two sub-engines, reducing resource con-
sumption and improving modular multiplier utilization. Com-
pared to an unoptimized design with two full-round engines,
our approach reduces area by 14.8% with just 7.04% extra time
overhead and achieves a 14.3 x speedup over FPGA design.

o We develop a Merkle Tree architecture with efficient on-chip
cache management and high resource utilization. Large-size
Merkle Trees are broken into standard tasks requiring mini-
mal cache for hierarchical processing. By efficiently managing
around 200KB of limited on-chip cache, our design supports
building large-size Merkle Trees. Merging multiple standard
tasks further improves Poseidon Hash engine utilization. Ac-
cIMT can achieve up to 1665 X speedup over CPU-based
implementation with an average Poseidon Hash utilization of
97.6%.

o Our proposed design natively supports flexible configuration of
key parameters for the Poseidon Hash engine and Merkle Tree,
enhancing its versatility across a broader range of applications.

II. BACKGROUND
A. Poseidon Hash Function

Poseidon is a novel arithmetic hash function designed for the
ZKP algorithm. While its native computation is more expensive than
traditional hash functions like SHA, it offers greater efficiency in
circuits, resulting in fewer constraints and reduced complexity for
both provers and verifiers. Poseidon Hash employs a sponge/squeeze
structure to map arbitrary-length strings over F), to a fixed-length
output, using iterations of the Poseidon permutation. The input, state
(S), is divided into rate (R) and capacity (C') bits, with R-sized blocks
absorbed into the sponge state. In the squeeze state, part of the state is
output as the hash digest. The Poseidon permutation consists of a full
round for higher security or a partial round for greater efficiency, with
the number of rounds varying by scenario. We present an overview
of the Poseidon Hash computation data flow in Fig. 1. In both cases,
the algorithm includes three stages: adding round constants (ARC');
an S-box layer for nonlinear diffusion using low-degree polynomials;
and maximum-distance separable (M D.S) matrix multiplication. In
partial rounds, all S-box layers except the first are replaced with
identity functions.

B. Merkle Tree in zk-STARK

A Merkle Tree (MT) is a tree structure in which each node is
constructed using a collision-resistant hash function. It commits to
an element sequence, allowing verification of an element’s presence.
The leaf nodes are obtained by hashing the elements, while non-leaf
nodes are derived by concatenating and hashing their child nodes.
The root node of the MT serves as a commitment to the sequence,
as finding different sequences with the same root is computationally
infeasible. Fig. 1 shows a simple schematic of the MT. We focus
on binary MT (arity = 2), where each non-leaf node has exactly
two child nodes, which is a common structure, though our proposed
architecture can be configured to higher arity structures.
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Fig. 1: Flowchart of Poseidon Hash (top) and Merkle Tree (down).
For the Poseidon Hash, we assume F full rounds and P partial rounds.
The case example features a 4-layer, size-16 Merkle Tree with an arity
of 2.

In the zk-STARK protocol, MT is used for polynomial com-
mitments. Fig. 2 outlines the proof generation phase, starting with
converting the program into computational integrity (CI) decla-
rations, followed by representing them as polynomials, including
trace and constraint polynomials. Multiple constraint polynomials
are then combined into a composition polynomial (CP), extended
using the low-degree extension (LDE), and evaluated/interpolated
via NTT/INTT. The composition and trace polynomials are then
committed on the extended domain using MT. After the Deep
operation, the polynomial undergoes low-degree testing using the
FRI method. During the polynomial folding process, MT is used
to commit to the polynomial at each stage. Additionally, this process
encompasses querying nodes within the MT and the BCS method
[19]. As these topics are not central to this paper, they are not detailed
further.
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Fig. 2: Flowchart of the Proof Generation Phase in a Typical zk-
STARK Protocol.

III. PROPOSED DESIGN

In this section, we first present the overall architecture of AccIMT.
Subsequently, we detail the microarchitecture of the Poseidon Hash
engine built with two sub-engines, along with the optimizations
of inter-sub-engine data flow. Finally, we present our insights at
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the Merkle Tree and optimization strategies for on-chip cache and
scheduling mechanisms.

A. Overall Architecture

Our proposed design, AccIMT, consists primarily of two Poseidon
Hash engines along with several on-chip caches for specific purposes
and a dispatch scheduler. Fig. 3 illustrates the overall architecture of
AccIMT. The leaf hash engine, a Poseidon Hash engine, receives
the raw element sequence and performs hash computations, storing
the leaf nodes in the leaf hash buffer. The root hash engine, also
a Poseidon Hash engine, constructs the non-leaf nodes through
concatenation and hashing, ultimately deriving the root node of the
Merkle Tree. The root hash buffer, scratch pad, and hierarchical
intermediate data memory store the intermediate results of the root
hash engine or provide inputs to it, with the dispatch scheduler
managing the scheduling and distribution of inputs and outputs for
the root hash engine. Each of these data storage units has distinct
roles, and we will elaborate on the employed design strategies in
Sec. III-C.
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Fig. 3: Overall Architecture of AccIMT.

B. Microarchitecture of Poseidon Hash Engine

We have examined the typical parameters within the Poseidon Hash
function, which mainly include the exponent in the S-box (the S-
box typically utilizes an exponential function for nonlinear diffusion),
the number of states in the Poseidon Hash, and the number of full
rounds and partial rounds. Our goal is to develop a highly efficient
and flexible Poseidon Hash engine with configurable parameters to
enhance versatility.

To achieve this, we first observe the range of these typical param-
eters and make the following simple insights, focusing on hardware
feasibility rather than delving into mathematical principles:

1) The exponent in the S-box is generally greater than or equal
to 3, with 3 being almost the most common choice. Some
applications may opt for 5 or 7 [3].

2) The number of states in the Poseidon Hash, which is arity + 1,
often tends to be multiples of 3. Typical values for arity include
2, 4,8, and 11 [3], [17].

3) Although the number of full and partial rounds varies across
different applications, we observe that the number of partial
rounds is generally significantly larger than that of full rounds.

Given these insights, we see great potential for optimizing the

Poseidon Hash engine in hardware. Our solutions are as follows:
For Insight 1), we design a configurable S-box with three modular
multipliers for exponents 3 and 5, and it can also handle exponent 7
with an Initial Interval (II) of 2; higher exponents are not supported

due to their rarity. For Insight 2), the Poseidon Hash engine, starting
at a state of 3, leverages the vector multiplication and self-adder to
support up to the state of 12, accommodating various arities. For
Insight 3), we develop a resource-intensive full-round engine for full
rounds in full mode and an area-efficient partial-round engine for
partial rounds; the full-round engine can also operate in partial mode,
enabling both engines to prioritize partial rounds, in line with our
observations on round quantities.

o Partial Mode
Full-Round Engine > Full Mode \

Reund-Gonmstant — — — — — — — — - — — - — MDS Vector— ~
Pipelined 1 MDS Array
Registers Vector
Multiplication

S Vector|
S Véctor|

MBS Vector,

Configurable

U] )
—»[ Full Thread ]‘—‘» 5

=l W
—»[ Full Thread ]f» e S

> @

LS
\—{ FR_Thread ]*_‘» 5

Partial-Round Engine

)

Full Thread

Partial Thread

Jayng
!

Partial Thread

P
2pPy payfedid |

%

S Vector|
S Vector|

—MES Véctor

Fig. 4: Microarchitecture of Two Types of Sub-engines in Poseidon
Hash Engine. The partial thread utilizes half the modular multipli-
cation resources of the full thread. The full-round engine supports
both partial-round and full-round computation, indicated by different
colored arrows.
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Fig. 4 displays the microarchitectures of our proposed full-round
and partial-round engines. The partial-round engine includes two
partial threads and one full thread, while the full-round engine
comprises three full threads. The partial thread, lacking an S-box,
uses half the modular multiplication modules of the full thread.
The partial-round engine is dedicated to partial-round computations,
while the full-round engine supports full-round computations in full
mode and partial-round computations in partial mode. The sub-
engine natively supports Poseidon permutation with state = 3. For
higher states, an outer product algorithm improves vector-matrix
multiplication efficiency. Each thread processes MDS vectors derived
from the MDS matrix, and results are aggregated via an adder tree.
The self-adder unit handles accumulation and outputs longer vectors
in chunks for higher states.

We improve the scheduling mechanism for the two sub-engines to
develop the Poseidon Hash engine. It can support arbitrary numbers
of full and partial rounds by reusing the full-round engine and partial-
round engine through iterative looping. Optimizing the data flow
between sub-engines results in higher area efficiency and resource
utilization for the Poseidon Hash engine. Fig. 5 compares our
Poseidon Hash engine’s optimized scheduling with an unoptimized
design that uses two full-round engines, as in TRIDENT [17]. The
unoptimized design keeps most S-boxes bypassed in partial mode
(where partial rounds dominate), leading to considerable modular
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Fig. 5: Optimized Data Flow of Poseidon Hash Engine with Dual Sub-engines. We use typical parameters, with 8 full rounds and 56 partial
rounds, as a case. Two different colors are used to illustrate the data flow of Poseidon Hash from different batches. ‘pr’ stands for partial
round, ‘fr’ represents full round, and the symbol # followed by a number indicates the round sequence number. The partial-round engine
consumes only % of the modular multiplication resources compared to the full-round engine.

multiplication waste. We find it inefficient to allocate excessive
resources to infrequent full rounds. So we assign more full rounds
to the full-round engine and allow the more efficient partial-round
engine to focus solely on partial rounds, reducing the number of
modular multiplication modules.

In our scheduling mechanism, the Poseidon Hash data is divided
into two batches. The full-round engine first performs half of the full
rounds for both batches, then switches to partial mode for the second
batch’s partial rounds, while the partial-round engine completes the
first batch’s partial rounds. The partial-round engine then processes
the second batch, with the full-round engine finishing the remaining
full rounds in full mode. While the partial-round engine incurs brief
idle times, adding minimal latency due to the round count difference,
it provides significant area savings, as detailed in Sec. IV-B.

C. Optimization for Merkle Tree

We utilize two Poseidon Hash engines as the Leaf Hash Engine
(LHE) and Root Hash Engine (RHE), along with a limited on-chip
cache, to construct AccIMT. We observe that during the building of
Merkle Tree, two key issues need to be addressed:

1) Merkle Tree sizes are often variable, with larger trees requiring
more input and intermediate data. However, relying solely on
larger intermediate caches is both inefficient and impractical.

2) The process of building the Merkle Tree involves aggregating
multiple child nodes into a parent node. At higher layers of the
tree, data distribution becomes sparser, leading to underutiliza-
tion of the Poseidon Hash engine and reduced computational
efficiency.

To address the first challenge, we propose the following solution:
as shown in Fig. 6, We use a 128KB Leaf Hash Buffer for LHE-
processed values and a 64KB Root Hash Buffer for RHE intermediate
results, with a 256-bit data width. These buffers fully support a 4096-
size Merkle Tree with arity = 2. To handle larger Merkle Trees in
various applications, we decompose them into groups of standard
Merkle Trees, each sized at 4096. Instead of computing the entire tree
at once, which generates and requires storing gigabits of intermediate
data, we pipeline each standard Merkle Tree group, reducing the
on-chip cache to about 100KB for a single standard Merkle Tree’s
intermediate data. The root of the standard Merkle Tree will be stored
in an 8.5KB hierarchical intermediate data memory (HIDM). HIDM
has two levels: Level O stores roots of standard Merkle Trees, which
are aggregated when full (corresponding to Merkle Tree layers 13 to
19), with the new root stored in Level 1. When Level 1 is full, a
final aggregation is performed for layers 20 to 23, with the final root
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Fig. 6: Optimized Computational Flow of the Merkle Tree in AccIMT.
AccIMT can leverage a limited on-chip cache and hierarchical inter-
mediate data memory (HIDM) to efficiently build large-size Merkle
Trees through an optimized task scheduling mechanism.

outputted. This hierarchical design supports building the Merkle Trees
up to a size of 22, RHE processes each standard Merkle Tree group
by reading data from the leaf hash buffer, and repeatedly writing and
accessing intermediate results in the root hash buffer for incremental
aggregation. The scheduler manages both RHE’s data read and write-
back operations.

To address key issue 2, we optimize the data scheduling mechanism
within AccIMT. LHE efficiently handles compactly arranged input
data, but as Merkle Tree layers deepen, RHE’s inputs and outputs
become sparser due to data dependencies, which limits its utilization
and creates backpressure, reducing LHE’s efficiency. We observe
that RHE’s pipeline utilization drops with each additional Merkle
Tree layer; pipeline bubbles in RHE significantly increase by the
fifth layer. As shown in Fig. 6, a 4KB scratch pad mitigates this:
when aggregating leaf nodes for each standard Merkle Tree, we
use root hash buffer as a data buffer, aggregating only up to 128
nodes, a process we call “major aggregation”. The final step to
reach the root of standard Merkle Tree is referred to as “minor
aggregation”. Proceeding directly with minor aggregation introduces
pipeline bubbles, greatly reducing the efficiency of the Poseidon Hash
engine. To improve this, we temporarily store the previous group’s
intermediate major aggregation results in a scratch pad and use a
merger to combine these intermediate data with the next group’s
major aggregation sequence, effectively filling pipeline bubbles left
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by the major aggregation sequence in the RHE. This optimization
substantially alleviates sparsity in the RHE pipeline, improving
RHE utilization and balancing it with LHE, thereby creating an
efficient computational pipeline. Fig. 7 illustrates the optimized data
scheduling for the RHE, further boosting the computation efficiency
for each standard Merkle Tree. In experiments, the pipeline data flow
between RHE and LHE limits minor aggregation to the 11" layer,
leaving only the final hash (12" layer). To avoid inefficiency from
performing a single hash, both values are stored in HIDM’s Level 0,
which manages tree layers 12 to 19.
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Fig. 7: Optimizing Data Scheduling for the RHE Pipeline. The
pipeline combines the Merkle Tree’s minor aggregations from the
previous group with the major aggregations from the current group,
significantly improving RHE utilization.

IV. EVALUATION
A. Experiment Setup & Overhead

In this section, we present the implementation results and per-
formance analysis of AccIMT. AccIMT is implemented in System
Verilog HDL and is based on a typical 256-bit data width. The
typical parameters in Poseidon Hash, including the S-box exponent,
state size, the number of full and partial rounds, and the size of
the Merkle Tree, are all configurable at runtime. We synthesize
AccIMT using the TSMC 28nm process library and Synopsys Design
Compiler, targeting a frequency of 500 MHz. The area report from
the synthesis tool indicates AccIMT has a total area of 20.87 mm?,
with the two Poseidon Hash engines taking up 93.7%, and memory
occupying about 1.31 mm?, which is roughly 6.3%. Our Merkle Tree
decomposition strategy allows handling several gigabits of data with
just nearly 200KB of on-chip cache.

B. Evaluation of the Poseidon Hash Engine

We compare the performance of our proposed Poseidon Hash
engine with existing FPGA-based work, TRIDENT [17], and CPU-
based work, NEPTUNE [4]. Using the Poseidon Hash configurations
from FileCoin [4] as benchmarks, we determine the specific parame-
ters based on Ingonyama’s tool [20]. Tab. I details the data, measuring
performance by hashes computed per second.

Compared to FPGA-based work, our Poseidon Hash engine offers
up to a 14.3 x speedup, achieving a throughput of 14.11M hashes per
second. To ensure a fair comparison, excluding frequency differences
and focusing solely on clock cycles, the maximum speedup is about
2.85 x. Notably, TRIDENT uses two units equivalent to our pro-
posed full-round engine. However, during partial round computation,
its S-box modules are bypassed and left idle, resulting in lower
resource utilization compared to our design. In contrast, We optimize
utilization by efficiently distributing tasks between the full-round
and partial-round engines, reducing modular multiplication resource
consumption by 16.7%. NEPTUNE is an optimized Rust-based open-
source implementation of Poseidon Hash for FileCoin. Compared to
NEPTUNE, our design offers a speedup of up to 145 x.

TABLE I: Comparison of Poseidon Hash Computation Speed: Ac-
cIMT vs. FPGA and CPU-based Works.

Work Ours TRIDENT [17] NEPTUNE [4]
Platfrom TSMC 28nm  Xilinx Varium C1100 Intel i7-13700F 32GB
Frequency 500 MHz 100 MHz 2.1 GHz
Arity =2 1411IM  0.99M (14.3 x / 2.85 x)* 97.00K (145 x)
Hash Rate Arity =4  5.93M - 57.67K (103 x)
(hash / sec) Arity = 8 3.79M 358K (10.6 x /2.12 x) 30.29K (125 x)
Arity = 11 2.69M 305K (8.82 x / 1.76 x) 20.96K (128 x)

a: The left side of the parentheses indicates the time-based speed up, while the

right side represents the clock cycle-based speedup.

Our speedup is optimal at arity = 2, while performance degrades
at higher arity levels. This is because, in our Poseidon Hash engine,
the two sub-engines support pipelined input and output at arity = 2,
resulting in the smallest initiation interval (II). However, at higher
arity, the sub-engines are no longer fully pipelined, requiring block
processing for input and output, which increases the II and diminishes
the overall speedup of the Poseidon Hash engine. Additionally, there
is space for further improvements in the scheduling mechanism of
the Poseidon Hash engine at higher arity.

Significant Reduction in Area: We conduct experiments to
validate that our Poseidon Hash engine, built with a full-round engine
and a partial-round engine, achieves higher area efficiency than the
baseline with two full-round engines. Based on the four benchmarks
from FileCoin shown in Tab. I, our proposal incurs an average
time loss of 7.04% relative to the baseline, primarily due to the
idling of the partial-round engine, as illustrated in Fig. 5. We also
synthesize a baseline design using two full-round engines. Compared
to this baseline, our proposed Poseidon Hash engine achieves a 14.8%
reduction in area, which closely aligns with our theoretical estimate
of 16.7% area reduction. Notably, this area savings is fixed, while
the time loss diminishes as the ratio of partial rounds to full rounds
increases. When the full round count is 8 and the partial round count
is 120 [3], the time loss drops to only 3.55%, nearly negligible, while
the reduction of area overhead remains at 14.8%.

C. Evaluation of the Merkle Tree

In Tab. II, we evaluate the performance of AccIMT in building
Merkle Trees of various sizes, comparing it to CPU-based implemen-
tations with an arity = 2, a common parameter. The CSF 24 [21]
uses the libff [23] library in C++ and builds Poseidon Hash-based
Merkle Trees with sizes up to 2'%. We also utilize the Rust-based
library from Dusk-network [22] for another benchmark.

The results show that AccIMT achieves up to a 245 X speedup
over CSF ’24 and a 1665 x speedup compared to Dusk-network.
As the size of the Merkle Tree increases, the speedup of AccIMT
becomes more pronounced. The execution time also includes initial
data loading and final aggregation in HIDM. When the size of the
Merkle Tree is small, the time to build the standard Merkle Tree
with AccIMT becomes shorter, and the proportion of time spent on
initialization and post-processing increases. As the Merkle Tree size
increases, the latency from subsequent data loading is masked by
the ping-pong mechanism of data transfer, and the proportion of
time spent on data aggregation in the HIDM decreases. At larger
sizes, the time for initialization and post-processing can be negligible.
Thus, AccIMT’s execution time grows sublinearly. Compared to CPU
implementations, which exhibit linear growth, AccIMT demonstrates
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TABLE II: Comparison of Time (ms) Spent by AccIMT and Other Works for Building Merkle Trees of Various Sizes.

Merkle Tree Size
Work Platform o2 513 ot 515 516 oT7 518 519 520 o7 o7 973
TSMC 28nm
Ours 500 MHz 0.91 1.22 1.83 3.04 5.45 10.3 19.8 39.0 77.4 154 308 615
CSF’24 Intel i9-13900KF  75.8 152 303 607 1213 2426 4852 ) ) )
[21] @ 6.0 GHz (83.3 x) (125 x) (166 x) (200 x) (223 x) (235 x) (245 x)
Dusk-network Intel Xeon Platinum 498 1.01s 2.00s 4.00s 7.99s 16.0s 32.0s 64.0s 128 s 256's 512s 1024 s

[22] 8358@ 2.6 GHz

(547 x) (828 x) (1093 x) (1316 x) (1466 x) (1553 x) (1616 x) (1641 x) (1654 x) (1662 x) (1662 x) (1665 x)

greater advantages in building larger Merkle Trees, making it partic-
ularly suited for building large-size Merkle Trees.

Science and Technology Commission of Shanghai Municipality under
Project 24BC3201000. The authors would like to thank the reviewers
for their valuable feedback.
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Fig. 8: Utilization Rate of the Leaf Hash Engine (LHE) and Root
Hash Engine (RHE) in AccIMT for Building Merkle Trees of Various
Sizes.

We also analyze the utilization rates of the LHE and RHE in
AccIMT during the building of Merkle Trees of various sizes, as
shown in Fig. 8. As the core component of AccIMT, one opti-
mization goal is to improve the Poseidon Hash engine’s utilization,
which typically correlates with higher computational throughput.
The utilization rates of LHE and RHE are quite similar, indicating
that data organization for standard Merkle Tree computations is
pipelined. Both engines maintain utilization rates above 95%, with
RHE reaching 96.7% and LHE nearing 100% as the Merkle Tree size
increases. This is expected, as RHE incurs more scheduling overhead,
increasing latency. With larger Merkle Trees, both engines’ utilization
approaches saturation due to the higher computational workload of
standard Merkle Tree computations. AccIMT achieves 99.2% and
95.9% average utilization for LHE and RHE, significantly exceeding
the pre-optimization average of under 85%.

V. CONCLUSION

In this paper, we introduce AccIMT, a highly resource-efficient
and flexible Poseidon Hash-based Merkle Tree architecture. We
implement the Poseidon Hash engine through hardware-software co-
optimization and data flow optimization, making it suitable not only
for Merkle Trees but also for various purposes in ZKP. We also
optimize the scheduling mechanism to ensure efficient acceleration
of Merkle Tree computation using limited on-chip cache. The pa-
rameters of the Poseidon Hash engine and Merkle Tree size are
configurable, offering AccIMT high flexibility for practical use in
diverse ZKP scenarios.
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