
PriorMSM: An Efficient Acceleration Architecture for

Multi-Scalar Multiplication

CHANGXU LIU, State Key Laboratory of Integrated Chips and Systems, School of Microelectronics, Fudan

University, Shanghai, China

HAO ZHOU, State Key Laboratory of Integrated Chips and Systems, School of Microelectronics, Fudan

University, Shanghai, China

PATRICK DAI, Semisand Chip Design Pte. Ltd., Singapore, Singapore

LI SHANG, State Key Laboratory of Integrated Chips and Systems, School of Computer Science, Fudan

University, Shanghai, China

FAN YANG, State Key Laboratory of Integrated Chips and Systems, School of Microelectronics, Fudan

University, Shanghai, China

Multi-Scalar Multiplication (MSM) is a computationally intensive task that operates on elliptic curves based

on GF (P). It is commonly used in zero-knowledge proof (ZKP), where it accounts for a significant portion

of the computation time required for proof generation. In this article, we present PriorMSM, an efficient ac-

celeration architecture for MSM. We propose a Priority-Based Scheduling Mechanism (PBSM) based on a

multi-FIFO and multi-bank architecture to accelerate the implementation of MSM. By increasing the pairing

success rate of internal points, PBSM reduces the number of bubbles in the pipeline of point addition (PADD),

consequently improving the data throughput of the pipeline. We also introduce an advanced parallel bucket

aggregation algorithm, leveraging PADD’s fully pipelined characteristics to significantly accelerate the im-

plementation of bucket aggregation. We perform a sensitivity analysis on the crucial parameter of window

size in MSM. The results indicate that the window size of the MSM significantly impacts its latency. Area-

Time Product (ATP) metric is introduced to guide the selection of the optimal window size, balancing the

performance and cost for practical applications of subsequent MSM implementations. PriorMSM is evaluated

using the TSMC 28 nm process. It achieves a maximum speedup of 10.9× compared to the previous custom

hardware implementations and a maximum speedup of 3.9× compared to the GPU implementations.

CCS Concepts: • Hardware→ Application-specific VLSI designs; • Computer systems organization

→ Architectures; • Security and privacy→ Hardware security implementation;

This work was supported in part by the National Key R&D Program of China under Grant 2023YFB2704600, and in part by

the National Natural Science Foundation of China (NSFC) Research Projects under Grant 92373207 and Grant 62090025.
Authors’ Contact Information: Changxu Liu, State Key Laboratory of Integrated Chips and Systems, School of Microelec-

tronics, Fudan University, Shanghai, China; e-mail: liucx22@m.fudan.edu.cn; Hao Zhou, State Key Laboratory of Integrated

Chips and Systems, School of Microelectronics, Fudan University, Shanghai, China; e-mail: hzhou21@m.fudan.edu.cn;

Patrick Dai, Semisand Chip Design Pte. Ltd., Singapore, Singapore; e-mail: patrick@semisand.com; Li Shang, State Key

Laboratory of Integrated Chips and Systems, School of Computer Science, Fudan University, Shanghai, China; e-mail:

lishang@fudan.edu.cn; Fan Yang, State Key Laboratory of Integrated Chips and Systems, School of Microelectronics, Fu-

dan University, Shanghai, China; e-mail: yangfan@fudan.edu.cn.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1084-4309/2024/08-ART77

https://doi.org/10.1145/3678006

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 77. Publication date: August 2024.

HTTPS://ORCID.ORG/0009-0000-0132-1461
HTTPS://ORCID.ORG/0009-0007-3333-3433
HTTPS://ORCID.ORG/0009-0003-0580-9204
HTTPS://ORCID.ORG/0000-0003-3944-7531
HTTPS://ORCID.ORG/0000-0003-2164-8175
mailto:permissions@acm.org
https://doi.org/10.1145/3678006
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3678006&domain=pdf&date_stamp=2024-08-13

77:2 C. Liu et al.

Additional Key Words and Phrases: Multi-scalar multiplication, zero-knowledge proof, privacy-

preserving computing, ASIC design

ACM Reference Format:

Changxu Liu, Hao Zhou, Patrick Dai, Li Shang, and Fan Yang. 2024. PriorMSM: An Efficient Acceleration

Architecture for Multi-Scalar Multiplication. ACM Trans. Des. Autom. Electron. Syst. 29, 5, Article 77 (Au-

gust 2024), 26 pages. https://doi.org/10.1145/3678006

1 Introduction

Multi-Scalar Multiplication (MSM) is a computationally intensive task with numerous applications
in cryptography. It can be regarded as vector inner product operations involving scalars and points
on elliptic curves (ECs). It can be expressed as follows:

Y =
N∑

i=1

Xi ·Gi . (1)

Here,Xi represents a member of scalars, the coefficients of polynomials, andGi denotes a point on
the given elliptic curve. N is the degree of MSM, which refers to the number of scalars and points
involved in the computation. It is typically a power of 2 determined by the specific applications.
In previous works, MSM can be decomposed into multiple individual scalar multiplications (SMs),
each conducted using the double-and-add method [19], followed by summing their results. How-
ever, with the emergence of increasingly practical applications in recent years, the value of N is
growing larger, at times reaching as high as 226 or even beyond. As a result, how to handle MSM
with a larger N is becoming a topic worth discussing. The bucket method [16, 18, 29] has proven
to be more efficient than the naive method mentioned above. This advancement has greatly accel-
erated the implementation speed of MSM, thereby significantly enhancing its overall efficiency.

1.1 MSM in Zero-knowledge Proof

Zero-knowledge proof (ZKP) [15] is a commonly used cryptographic protocol widely applied in
blockchain applications and secure multiparty computation. It allows one party (the prover) to
prove to another party (the verifier) that the prover knows the secret without revealing any valu-
able information. In specific applications, ZKP can be utilized for safeguarding patients’ private
health data [22], ensuring secure authentication for car charging [13], and various other use cases.

ZKP schemes generally involve three stages: Set up, Prove, and Verify. The prover is required
to perform extensive computations, involving Number Theory Transformations (NTTs) and MSM,
to generate the proof. Upon receiving the proof, the verifier must validate its correctness without
requiring additional information from the prover.

Let’s consider a simple example: Aleo ZK Proof of Work [28]. In the Setup step, it is necessary
to prepare a set of points in Lagrange form, [G]eval

SRS
= {G1,G2, ...G2n}, and a random polynomial

in the evaluation form, ceval
2n = {c1, c2, . . . , c2n}. During the Prove step, the BLAKE algorithm gen-

erates coefficient representations for a corresponding scalar sequence based on a random nonce
input. Performing a 2n-size NTT allows us to obtain the evaluation representations of this scalar
sequence, denoted as f eval

2n . We can further calculate r eval
2n = f eval

2n � ceval
2n . By executing MSM,

we obtain дcomm = (r
eval
2n) · [G]eval

SRS
. Here, r eval

2n represents the scalars in MSM, corresponding to

Xi in Equation (1). [G]eval
SRS

denotes the points in MSM, corresponding to Gi in Equation (1). From
the Prove step, it is evident that the primary computations are concentrated in the NTT and MSM.
Notably, the calculations involved in MSM constitute more than 70% of the overall computational
overhead [26]. Moreover, the idea of ECNTT [28] suggests that precomputation may reduce the

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 77. Publication date: August 2024.

https://doi.org/10.1145/3678006

PriorMSM: An Efficient Acceleration Architecture for Multi-Scalar Multiplication 77:3

Table 1. MSM in Various ZKP Protocols [35]

Protocol Groth16 Plonk Marlin

Num. of G1 2 9 6
Num. of G2 1 0 0
MSM in proof time 70%–80% 85%–90% 70%–80%

1The exact value depends on a specific application.

need for frequent use of NTT. Nevertheless, it is important to emphasize that MSM retains its
essential role, highlighting the ongoing significance of MSM in ZKP schemes.

There are several other representative ZKP schemes, including zk-SNARK [6], Groth16 [17],
BulletProofs [9], Plonk [14], and Marlin [10]. All of the above protocols rely on MSM to compute
polynomial commitments [35]. In Table 1, it is evident that certain representative protocols allocate
a significant portion of their processing time to MSM computations. Consequently, accelerating
MSM computations is of crucial significance for ZKP applications and remains a primary focus
of our attention. We firmly believe that the advancements in MSM hold immense potential for
enhancing numerous real-world applications.

1.2 Related Works

Previous works have made significant optimizations and improvements for operations on elliptic
curves. Enhancements in basic multiplier circuits have been achieved. The work [33] presents ef-
ficient VLSI designs for optimized radix multiplication in GF(2m). These designs include bit-serial,
digit-serial, and bit-parallel structures. Additionally, there are custom hardware designs for point
multiplication tailored to specific curves. The work [32] introduces efficient hardware implemen-
tations for binary Edwards curves. These implementations utilize novel complete differential addi-
tion formulas to enhance the speed and efficiency of point multiplication operations. The work [24]
introduces a novel high-speed ECC processor, leveraging segmented pipelined full-precision mul-
tipliers and a modified LD Montgomery point multiplication algorithm, achieving the fastest ECC
processor design on FPGA at that time. The survey [31] provides a comprehensive summary of
advancements in hardware implementations of ECC, covering various elliptic curves, point multi-
plication algorithms, and finite field arithmetic discussions, along with a classification comparison
and performance evaluation of FPGA and ASIC implementations.

While MSM is based on ECC, its computational essence is fundamentally different, predomi-
nantly consisting of a large number of point multiplication operations. Many outdated hardware
solutions rely on traditional point multiplication units [5, 30, 34] that are implemented using the
double-and-add scheme. Extending these schemes to a larger degree is straightforward but naive.
Data dependencies result in underutilized computational units, making the processing of MSM
with a larger degree intolerably time-consuming. To further speed up the implementation of MSM,
some works underwent algorithmic innovations. The works [16] and [18] have introduced some
ideas on how to speed up the implementation of MSM. While the bucket method is easy to un-
derstand, we aim to investigate some optimizations and its efficient implementation on hardware
applications.

Some works aim to facilitate the implementation of ZKP including MSM by constructing univer-
sal libraries. gnark [8] is a zk-SNARK library that provides a high-level API for designing circuits.
It supports Groth16 and Plonk. EdMSM [21], built upon gnark-crypto, is implemented in Go and
uses hand-written arm64 assembly to accelerate the MSM. Nonetheless, given the inherently par-
allelizable nature of MSM, it does not align optimally with the computational strengths of CPUs,
leading to suboptimal implementation efficiency.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 77. Publication date: August 2024.

77:4 C. Liu et al.

Naturally, researchers try to explore leveraging GPUs to accelerate the implementation of MSM,
given their inherent parallelism. GZKP [27] and cuZK [26] represent GPU-accelerated ZKP, with a
primary focus on MSM. While utilizing bucket methods, they prioritize aligning MSM implemen-
tations with GPU architecture, lacking a thorough exploration of MSM’s intrinsic mathematical
properties. Despite the low latency of GPU-based MSM computation, it incurs high power con-
sumption without achieving an optimal tradeoff. Moreover, finite field-based MSM underutilizes
GPU floating-point processing units, leading to performance redundancy. Elastic MSM [38] is a
recent development in MSM that focuses on leveraging precomputation techniques to utilize the
computational power of GPUs fully. It significantly enhances performance while imposing consid-
erable demands on device storage capacity and bandwidth.

Given limitations on general-purpose platforms, some works have focused on achieving optimal
MSM performance through custom circuits, primarily utilizing ASIC and FPGA implementations.
PipeZk [36] introduces an end-to-end pipelined design for zk-SNARK on ASIC. However, the de-
sign principles of the Buckets in the MSM limit potential improvements in processing efficiency.
Additionally, a substantial amount of data is transferred back to the host for computation, and
PipeZk cannot handle point double (PDBL). Consequently, we argue that it does not qualify as a
comprehensive MSM accelerator. PipeMSM [35] and CycloneMSM [2] are FPGA implementations
of MSM. However, due to the data dependencies in the pipeline caused by the mixadd-based point
addition (PADD) design, its data scheduling mechanism continues to introduce numerous pipeline
bubbles, thereby compromising performance. Additionally, the bucket aggregation algorithm em-
ployed by CycloneMSM is relatively simple, potentially creating another bottleneck in MSM with
slightly smaller degrees. Gypsophila [25] proposes a scalable and bandwidth-optimized MSM archi-
tecture, primarily focusing on the optimization of the multi-MSM hardware architecture, without
making significant optimizations to the bucket method, particularly the bucket aggregation step.
BSTMSM [37], based on the Xilinx U250 platform, is a recently released MSM accelerator. It pri-
marily focuses on reducing bucket access collisions to improve pipeline efficiency. This aligns with
the goals of our work; however, its design employs a significant amount of true dual-port SRAM
as the Buckets, resulting in a much larger storage overhead compared to our approach. From an
application perspective, it is not practical.

1.3 Our Contributions

We have identified several issues in the previous works:
There is further potential for improving the computational efficiency of the bucket classifica-

tion step. While the performance of the MSM accelerator mainly relies on the PADD units, the
utilization of PADD in previous works was not optimal. For instance, the mixadd-based PADD
unit introduces data dependencies in the MSM computational pipeline, thereby limiting perfor-
mance. In an ideal scenario, if the MSM accelerator has only one pipeline PADD unit and we fully
exploit its computational capacity, the average number of clock cycles per point should be around 1.
However, previous works result in higher clock cycle counts per point. This observation confirms
our findings.

They have almost completely overlooked optimizing the bucket aggregation step in their im-
plementation. When the degree of the MSM is relatively small, the approaches taken in previous
works greatly limit the overall performance of the MSM due to the implementation of this step. Ad-
ditionally, at this point, the utilization of PADD units is low, and their computational performance
is not fully realized.

There should be a proper guideline for selecting the window size. The selection of window size is
critical in a custom circuit-based solution. However, in previous works, the selection of the window
size is arbitrary or lacks rationale. In some cases, they opt for a larger window size to reduce the

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 77. Publication date: August 2024.

PriorMSM: An Efficient Acceleration Architecture for Multi-Scalar Multiplication 77:5

time consumption of the bucket classification step, but this results in a significant increase in the
area overhead of the bucket and the time consumption of the bucket aggregation step.

To address these performance limitations of previous MSM accelerators or achieve a more bal-
anced tradeoff between area and speed, in this article, we propose PriorMSM, a highly efficient
acceleration architecture for MSM. Our architecture can accommodate any elliptic curve choice;
however, there may be variations in the design of the PADD unit. The selection of curves should
be based on a comprehensive evaluation of security and performance tailored to the specific appli-
cations. We divide the MSM into three steps: bucket classification, bucket aggregation, and result
aggregation. Each of these steps has undergone improvements and optimizations to enhance their
performance. Our contributions include:

— We employ multi-FIFO and multi-bank architecture to construct a Priority-Based Scheduling
Mechanism (PBSM) that improves the pairing success rate of points, minimizing stalls and
bubbles in the pipeline of MSM. This architecture achieves an average clock cycle per point
close to 1 in the bucket classification step of MSM. We utilize precomputation techniques and
the ωNAF method to compress the effective scale of the index used in the bucket method,
reducing the on-chip SRAM area to just 37.5% of its original size.

— We further propose a highly efficient implementation and in-depth analysis of the bucket
aggregation step, which prior works have ignored. A partitioning algorithm is introduced to
enable the “parallel” execution of the bucket aggregation step. By leveraging the inherently
fully pipelined nature of PADD, this partitioning algorithm can significantly enhance the
performance of the bucket aggregation step on hardware. Experimental results demonstrate
that this optimization can reduce the time consumption of this step by nearly 95%.

— We analyze the design sensitivity of MSM, investigating the impact of optimizing the bucket
aggregation step on the overall performance of MSM. Additionally, we examine the influence
of window size selection on its performance. We do not blindly pursue an increase in window
size, even though it significantly improves the implementation speed of MSM. Instead, we
consider using the Area-Time Product (ATP) metric to evaluate the relative optimality of
MSM design parameters, providing valuable insights for subsequent works.

The remainder of the article is structured as follows. In Section 2, we provide foundational con-
cepts related to elliptic curves. Section 3 presents the details of PriorMSM. We provide a mathemat-
ical description of the bucket method and the optimized bucket aggregation. This section provides
a comprehensive introduction to the submodule design and overall architecture of PriorMSM. We
also elucidate employed strategies, such as precomputation techniques and the ωNAF method
for scalar processing, contributing to hardware optimization. Section 4 unveils the implementa-
tion of our design, detailing adopted parameters. Tables and figures effectively demonstrate our
comprehensive exploration of design sensitivity and the performance evaluation of our design.
Additionally, this section includes a comparison of PriorMSM with previous works. In Section 5,
we conclude with remarks on our work. Appendix A presents a more detailed theoretical analysis
of the latency of the bucket method employed in this article, as well as the effectiveness of our
optimization techniques for the bucket aggregation algorithm.

2 Preliminary

An EC is a cubic curve whose solutions are confined to a region of space topologically equivalent to
a torus. To facilitate understanding, we’ll explain the concept of elliptic curves from an engineering
perspective rather than providing a rigorous mathematical definition. Simply put, an elliptic curve
E over Fq is the set of points that satisfy Equation (2), where coefficients asw and bsw must satisfy

a certain condition 4a3
sw + 27b2

sw � 0. This is commonly known as the general Short Weierstrass

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 77. Publication date: August 2024.

77:6 C. Liu et al.

form of the elliptic curve.

y2 = x3 + aswx + bsw . (2)

Additionally, various types of elliptic curves exist, such as the Edwards curve, Hessian curve,
Montgomery curve, Twisted Edwards curve, and Twisted Hessian curve. Each curve is defined
by a distinct formula; for instance, the Montgomery curve can be expressed by Equation (3). The
Twisted Edwards curve can be represented as Equation (4).

Bmony
2 = x3 +Amonx + x . (3)

atex
2 + y2 = 1 + dtex

2y2. (4)

Many elliptic curves are birationally equivalent to each other or satisfy certain special conditions
that establish equivalence. For example, any elliptic curve can be transformed into the Short Weier-
strass form through a birational equivalence [1]. Each Twisted Edwards curve can be transformed
into an equivalent Montgomery curve through birational equivalence. In particular, the Twisted
Edwards curve Eat e ,dt e

is birationally equivalent to the Montgomery curve MAmon,Bmon
. The trans-

formation of parameters and the mapping from a point (x ,y) on curve Eat e ,dt e
to a point (x ′,y ′)

on curve MAmon,Bmon
is expressed by the following equation:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Amon =
2(at e+dt e)

at e−dt e
,

Bmon = 4
at e−dt e

,

(x ′,y ′) =
(1+y

1−y
,

1+y

x (1−y)

)
.

(5)

Similarly, when mapping from the Montgomery curve MAmon,Bmon
to the Short Weierstrass curve

Easw ,bsw
, the transformation relationship is depicted by Equation (6), where (x ′′,y ′′) represents a

point on the curve Easw ,bsw
:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

asw =
3−A2

mon

3B2
mon

,

bsw =
2A3

mon−9Amon

27B3
mon

,

(x ′′,y ′′) =
(

x ′

Bmon
+

Amon

3Bmon
,

y′

Bmon

)
.

(6)

The transformation from the Short Weierstrass curve to the Twisted Edwards curve is the inverse
of the transformation mentioned above. For further details, refer to [11].

In addition to the various curve forms, each curve can possess different coordinate representa-
tions. In the above equations, x and y are in affine coordinates, indicating that (x ,y) represents
a point on the curve. Additionally, there can be projective coordinate representations, where
(X ,Y ,Z) represents a point on the curve. A point (x ,y) in affine coordinates is equivalent to
(X/Z ,Y/Z). These are just the more common forms of coordinate representations; other forms
exist, such as extended coordinates under the Twisted Edwards curve [20]. By introducing an aux-
iliary coordinate t = xy, we can use (x ,y, t) in extended affine coordinates to represent (x ,y) in
affine coordinates.

In Equation (1), Gi represents an element in an EC denoted as E, which consists of a total of N
points. The operation referred to as “multiplication” betweenXi andGi is commonly recognized as
point multiplication (PMUL) or scalar multiplication (SM). Typically, this operation is transformed
into a series of PADD operations and can be articulated as follows:

Xi ·Gi = Gi +Gi + · · · +Gi︸�����������������︷︷�����������������︸
Xi t imes

. (7)

The outcome of scalar multiplication is a point on E. When multiple scalar multiplications are
carried out and their results are collectively accumulated, the outcome remains a point on E.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 77. Publication date: August 2024.

PriorMSM: An Efficient Acceleration Architecture for Multi-Scalar Multiplication 77:7

Table 2. Comparison of Different Coordinate Systems

Coordinates Affine coordinates Projective coordinates Extended coordinates Inverted coordinates

Num. of mul 7 13 9 12
Num. of inv 2 0 0 0
Num. of add 4 7 9 7
Unified Yes Yes Yes Yes

To provide further clarification, let’s consider the example of BLS12-377 [4]. BLS12-377 is a
widely employed elliptic curve in cryptography, particularly for applications such as ZKPs and
other cryptographic schemes. In our context, the BLS12-377 curve serves as the primary target for
PriorMSM design considerations. However, it’s essential to highlight that PriorMSM is an archi-
tecture not inherently tied to a specific curve. BLS12-377 overG1 can be mathematically expressed
in the Short Weierstrass form as follows:

y2 = x3 + 1. (8)

As previously mentioned, many curves, including widely used ones such as BLS12-377, BLS12-381,
and BN254, exhibit birational equivalence [7, 11]. Consequently, BLS12-377 can also be represented
in the Twisted Edwards curve as illustrated in Equation (4), where

ate = − 1.

dte =136396142414293534522166394536258004439411625840037520960

350109084686791562955032044926524798337324377515360555012.

(9)

An appealing characteristic of the Twisted Edwards curve lies in its strongly unified point addition
law. A unified point addition formula eliminates the need to handle exceptions in specific scenarios,
such as adding two identical points or adding a point at infinity. Simultaneously, the Twisted
Edwards curve’s addition formula boasts faster computation than unified formulas in alternative
curve forms. Its notable efficiency stems from the strong property of completeness, enhancing its
performance in cryptographic protocols. For additional details, refer to [20]. So in our proposed
design, we construct a PADD unit based on the Twisted Edwards curve.

When it comes to coordinate system selection, both PADD and PDBL can be constructed using
several modular multiplications (mul), modular additions (add), and modular inverses (inv). Re-
ferring to [20] and [12], we summarize the counts of these operations in BLS12-377 across four
primary coordinate systems. Details are presented in Table 2. The main factors influencing per-
formance are mul and inv. Inevitably, implementing inv in affine coordinates can be inefficient.
In PriorMSM, we leverage the extended projective coordinates under the Twisted Edwards curve,
enabling the implementation of a unified PADD with only 9 muls.

3 Proposed Design

In this section, we delve into the hardware acceleration scheme designed for MSM. The founda-
tion of our approach lies in the meticulous design of the PADD, an indispensable component in
the MSM algorithm, as expounded in Section 3.1. The PADD unit is tasked with performing the
addition of two points on an elliptic curve, and we present a comprehensive overview of its hard-
ware implementation. Moving forward, Section 3.2 outlines the algorithm forming the basis of our
work, along with the optimizations we have implemented. This includes a detailed exploration of
bucket classification and aggregation steps. The subsequent Section 3.3 delves into the hardware
implementation specifics of PriorMSM, featuring a highly efficient PBSM. Section 3.4 introduces
the ωNAF method and precomputation techniques. These prove instrumental in significantly

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 77. Publication date: August 2024.

77:8 C. Liu et al.

Table 3. Four-processor Twisted Edwards Unified Addition

Cost Step Thread 1 Thread 2 Thread 3 Thread 4

2 muls 1 idle idle R1 ← Z1 ∗ Z2 R2 ← T2 ∗ k
5 adds 2 R3 ← Y1 + X1 R4 ← Y1 − X1 R5 ← Y2 + X2 R6 ← Y2 − X2

3 muls+1 add 3 R7 ← R3 · R5 R8 ← R4 · R6 R9 ← 2 · R1 R10 ← T1 · R2

4 adds 4 R11 ← R7 + R8 R12 ← R7 − R8 R13 ← R9 + R10 R14 ← R9 − R10

4 muls 5 X ← R12 · R14 Y ← R11 · R13 Z ← R13 · R14 T ← R11 · R12

curtailing the on-chip storage circuit’s spatial requirements. We also explore the seamless inte-
gration of these techniques into our hardware implementation of the MSM algorithm.

3.1 PADD Unit

The computational power of MSM is primarily provided by the PADD unit. Remarkably, the PADD
unit is tasked with two distinct operations: the first is point addition, which entails the combination
of two not-equal points, and the second is point double, a process that involves the addition of two
identical points. In addressing both scenarios, a unified formula [20] can be adeptly applied.

In Section 2, we introduce the utilization of extended Twisted Edwards coordinates for repre-
senting points. The addition formula can be referenced in Section 3.1 in [20]. Table 3 outlines the
Four-processor Twisted Edwards unified point addition, specifically tailored for BLS12-377.

Following the steps outlined in Table 3, we design a fully pipelined PADD unit that necessitates
a total of 9 muls and 9 adds. The PADD unit described in [35] necessitates 7 muls, with the
caveat that it takes a duration of two cycles to generate a point. The pipeline feature of PADD is
crucial for accelerating the implementation of MSM, with both two-cycle and one-cycle pipelines
exerting significant influence on MSM calculations. To optimize performance with the PADD unit,
we employ full unrolling of the point addition formula. This results in a highly efficient PADD
unit capable of concurrently processing two input points and generating a single-output result
per cycle. The pipelined data path of this unit is depicted in Figure 1. The inputs (X1,Y1,Z1,T1)

and (X2,Y2,Z2,T2) are in extended projective coordinates, and the output of PADD is denoted by
(Xr es ,Yr es ,Zr es ,Tr es).

The high-cost pipelined mul incurs a longer latency compared to the add operation, thus dom-
inating the overall computation time. We employ the Barrett reduction algorithm from [35] and
implement a four-layer Karatsuba method [23] to construct the high-cost pipelined mul. Each
mul involves a set of 24-bit multipliers. Our PADD unit achieves an operating frequency of up to
1 GHz in the TSMC 28 nm process. A single mul requires 27 cycles, resulting in a total latency of
87 cycles for the PADD unit.

3.2 Optimized Bucket Method

The bucket aggregation step in the bucket method is often overlooked, leading to the adoption of a
naive approach that is often inefficient and has low hardware utilization. By leveraging the advan-
tages of custom hardware design for pipelining, we develop a highly efficient bucket aggregation
step, resulting in an optimized bucket method.

To facilitate comprehension, we provide the symbols outlined in Table 4. The bucket method,
also Pippenger’s algorithm, involves dividing a b-bit scalar into smaller c-bit segments, referred to
as indexes. In detail, each scalar can be represented as (ai(m−1), . . . ,ai j , . . . ,ai1,ai0), where each
ai j is a c-bit integer. We refer to MSM between each group of indexes and points as the reduced
MSM. Therefore, our focus can be solely on the reduced MSMs since they are independent. By
aggregating their computation results, we can derive the overall outcome of the MSM. Furthermore,
MSM can be represented by the following three steps, as illustrated in Figure 2:

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 77. Publication date: August 2024.

PriorMSM: An Efficient Acceleration Architecture for Multi-Scalar Multiplication 77:9

Fig. 1. The fully pipelined PADD unit in extended coordinates. The mul is denoted by a red circle with an
“x”. The add is represented by a green circle with a “2” or “+”. The modular subtraction unit can also be
represented by an add and is indicated by “-”. The buffer used to align data is shown as a cyan “pipe.” k is a
parameter, and it is defined as k = 2dte .

Table 4. Symbols and Descriptions in Section 3

Symbol Description

N Degree of MSM

b Bit width of a scalar

c Bit width of reduced scalar or window size

a Reduced scalar or index (each one has width with c-bit)

G Point on elliptic curve

S
Buckets. When there are two subscripts, the former represents the index of the
reduced MSM and the latter represents the index of the bucket. When there is
only one subscript, it only represents the index of the bucket.

m �b
c
�, the number of reduced MSMs

k Value of index, k = ai j

H Number of groups of buckets (lowercase for the index of the current group)

M � 2c

H
�, number of buckets each group

D Number of clock cycles required for one PADD unit

— Bucket classification
— Bucket aggregation
— Result aggregation

Mathematically, these three steps can be expressed as Equation (10):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

S jk =
∑N

i=1(ai j == k) ·Gi ,

R j =
∑N

i=1 ai j ·Gi =
∑2c−1

k=0 k · S jk ,

Y =
∑N

i=1 Xi ·Gi =
∑N

i=1

∑m−1
j=0 2jc · ai j ·Gi ,

=
∑m−1

j=0

∑N
i=1 2jc · ai j ·Gi =

∑m−1
j=0 2jc · R j .

(10)

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 77. Publication date: August 2024.

77:10 C. Liu et al.

Fig. 2. We divide the MSM into m reduced MSMs, consisting of three steps. The first step is bucket classifi-
cation, responsible for classifying points into corresponding buckets based on their indexes. The second step
is bucket aggregation, where the values contained in each reduced MSM’s buckets are aggregated. The final
step is result aggregation, where the results from each reduced MSM are aggregated together.

S jk represents the bucket classification. We begin by classifying distinct Gi into bucket k based
on their corresponding indexes, ai j , where k = ai j and 0 ≤ k < 2c . R j represents the bucket
aggregation, where we calculate the sum of all points within buckets. Each point is multiplied
by its corresponding index value k . After aggregating the outcomes of each reduced MSM, R j , by
multiplying them with a factor of 2jc , we obtain Y , which represents the final result of the MSM.
This aggregation aligns the computation result of the jth reduced MSM with the position of its
c-bit scalar within the b-bit scalar. Algorithm 1 outlines the details of the bucket method.

We observe that numerous studies employing the bucket method have often overlooked oppor-
tunities for enhancing the bucket aggregation step and leveraging the pipelining capabilities of
the PADD unit. Due to the fixed computation paradigm of the bucket aggregation step, the data
dependency relationships can potentially limit the performance of calculations. In more severe

cases, when N is smaller and c is larger, or in other words, when
log2(N)

c
decreases, accelerating

the bucket aggregation step becomes increasingly crucial for MSM.
In Algorithm 1, the naive bucket aggregation in reduced MSM can be expressed as

2c−1∑
k=1

kSk = (2
c − 1) · S2c−1 + (2

c − 2) · S2c−2

+ · · · + 2 · S2 + S1.

(11)

In this step, the algorithm is only dependent on the values of c and those in S , and it is no longer
influenced by N . In this computation paradigm, we need to sequentially traverse 2c − 1 bucket
values, which constitutes a very long computational chain.

By introducing a partitioning algorithm, we exploit the parallelism of the bucket aggregation
step. We partition all the buckets into H groups, with each group comprising M points. Typically,
H is chosen as a power of 2. Equation (11) can be expressed as follows:

2c−1∑
k=1

kSk = [(H ∗M − 1) · SH∗M−1 + (H ∗M − 2) · SH∗M−2

+ · · · + ((H − 1) ∗M + 1) · S(H−1)∗M+1]

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 77. Publication date: August 2024.

PriorMSM: An Efficient Acceleration Architecture for Multi-Scalar Multiplication 77:11

ALGORITHM 1: Bucket method

1: Function: Bucket Classification
2: set S = NULL (Point at infinity)
3: for j = 0, j < m, j + + do

4: for i = 0, i < N , i + + do

5: set k = ai j � Identify the target bucket.
6: S j,k ← S j,k +Gi

7: end for

8: end for

9: Function: Bucket Aggregation
10: for j = 0, j < m, j + + do

11: set R j = NULL (Point at infinity)
12: for k = 2c ,k > 0,k − − do

13: R j ← R j + S j,k

14: S j,k−1 ← S j,k + S j,k−1

15: end for

16: end for

17: Function: Result Aggregation
18: set Y = NULL (Point at infinity)
19: for j =m − 1, j > 0, j − − do

20: Y ← 2c · Y + R j

21: end for

+ . . .

+ [(h ∗M) · Sh∗M + (h ∗M − 1) · Sh∗M−1

+ · · · + ((h − 1) ∗M + 1) · S(h−1)∗M+1]

+ . . .

+ [(M) · SM + (M − 1) · SM−1 + · · · + S1].

(12)

For each group out of them, it can be expressed as

(h ∗M) · Sh∗M + (h ∗M − 1) · Sh∗M−1

+ · · · + ((h − 1) ∗M + 1) · S(h−1)∗M+1.
(13)

We can rewrite it as

[(M) · Sh∗M + (M − 1) · Sh∗M−1 + · · · + S(h−1)∗M+1]

+ (h − 1) ∗M ∗ [Sh∗M + Sh∗M−1 + · · · + S(h−1)∗M+1].
(14)

Thanks to the fully pipelined PADD unit, the computation of the first term in Equation (14)
can be executed in the form of “parallel.” Here, “parallelism” does not strictly imply complete
parallelism but rather signifies that the bucket in each group can be queued for entry into the
PADD unit. The calculations are carried out independently but in a temporally compact manner.

We employ a straightforward example with H = 4 and M = 4 to illustrate the computation
of partitioned bucket aggregation using a fully pipelined PADD unit. The process is illustrated in
Figure 3. To derive the result of the bucket aggregation step (denoted as “Target” in Figure 3), in
Step 1, PADD computes R and T by using the method described in Algorithm 1. However, since
the buckets are divided into four groups, this process can be executed “in parallel” using pipelined
PADD. In Step 2 and Step 3, we aggregate these groups to obtain the target. We can utilize the

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 77. Publication date: August 2024.

77:12 C. Liu et al.

Fig. 3. A simple partitioned bucket aggregation with H = 4 and M = 4.

acquired T values to replace the original longer chain of PADD operations with a shorter chain,
reducing the number of PADD operations needed.

Optimization rate is introduced as a metric to evaluate the effectiveness of our partitioning al-
gorithm on the bucket aggregation algorithm. It can be expressed by the following formula:

optimization rate =
clock cycles consumed by the optimized bucket aggregation algorithm

clock cycles consumed by the naive bucket aggregation algorithm
.

(15)
The mathematical representation is given by Equation (22) in Appendix A. A lower optimization

rate indicates a better optimization effect. This algorithm optimization represents a significant ad-
vancement, greatly reducing the number of clock cycles required during the bucket aggregation
step. For instance, with c = 16 and H = 16, the optimization rate is about 6.27%. A detailed math-
ematical analysis of the optimized bucket aggregation algorithm and the calculation method for
the optimization rate are presented in Appendix A.

3.3 Architecture

The proposed acceleration architecture, PriorMSM, which implements the bucket method de-
scribed in Section 3.2, is illustrated in Figure 4. PriorMSM consists of several key components:
the scheduler, the computation module (PADD), the storage modules (FIFO, Buckets, and Flag reg-
isters indicating the validity of data in Buckets), and various data switching and selection modules
(Crossbar and Mux). External data is fetched from the DRAM and then directed into the PriorMSM.
On the right side of Figure 4, we present the microarchitecture of the scheduler, which primarily
consists of Flag registers and the Bucket R&W controller, FIFO R&W controller, PADD controller,
and Process controller. The arrows in the diagram indicate the direction of information flow. Flag
registers record the validity of the data in the Bucket and provide information to the Bucket’s R&W
controller. The Bucket R&W controller manages the read/write actions on the Bucket, generates
addresses, and notifies the FIFO R&W controller if a read operation occurs. The FIFO R&W con-
troller oversees all read/write actions on the FIFOs, including selecting the FIFO being operated on
and monitoring the status of the FIFO. The PADD controller, relatively simple in design, primarily
controls the start/stop of the PADD and monitors for valid data in the PADD pipeline. The Process
controller monitors the status information of each controller to control the overall calculation pro-
cess of PriorMSM. In other words, it integrates the scheduling mechanism, PBSM, proposed by us.

Bucket Classification: The acceleration of MSM primarily hinges on the bucket classification
step, a focal point of our hardware design. Leveraging multi-FIFO and multi-bank architecture, we
propose the PBSM. PBSM augments the likelihood of pairing points, thereby minimizing pipeline

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 77. Publication date: August 2024.

PriorMSM: An Efficient Acceleration Architecture for Multi-Scalar Multiplication 77:13

Fig. 4. Architecture of PriorMSM. On the right side is the microarchitecture of the Scheduler, with arrows
indicating the direction of information flow.

Fig. 5. Data scheduling mechanism of PriorMSM. We choose c = 4 for simplicity and implement the Buckets
using two banks.

stalls and ensuring a high-throughput data flow in the PADD. We illustrate PBSM with a simple
demo in Figure 5. Window size is set to 4 and Buckets are implemented using SRAM with two
banks.

In the initial stage, the pipeline of PADD is empty. Consequently, only new input data from the
external DRAM is utilized, with the corresponding ai j serving as an index. If there is no point in
the Buckets with the associated index, the bucket flag is set to valid, and the new input point is
directly written into the corresponding bucket, as shown byG2 in Figure 5. If a point already exists
in the Buckets, both the previously stored point S3 (corresponding to the earlier G1) and the new
input point G3 are transferred to FIFO_U1. Subsequently, the bucket flag is reset to invalid.

PADD reads pairs of points from FIFO_U1, and upon completing the computationally intensive
point addition, it produces the results. Most of the time, PADD continuously generates results that
can be either written back into the Buckets or sent to the FIFOs, along with existing points from

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 77. Publication date: August 2024.

77:14 C. Liu et al.

the Buckets. This process corresponds to the stage denoted as "Both" (the block highlighted in
purple) in Figure 5. An ideal situation occurs when the index of the new input point is equal to the
index of the PADD output point, enabling them to be sent into FIFOs even if the corresponding
position in Buckets has valid data, as exemplified by Gt0 and Rt0. This strategy helps to minimize
the dynamic power consumption associated with reading and writing to Buckets. Alternatively, in
certain cases, one of both the input point and the PADD output point may need to be written into
the Buckets. At the same time, the other is sent to the FIFO alongside a corresponding existing
point in the Buckets. This is illustrated in scenarios such asGt5 and Rt5 orGt6 and Rt6. We employ
SRAM instead of the registers used in [36] for the Buckets, which is advantageous for optimiz-
ing circuit area while also supporting wider window sizes. However, due to the structure of the
Buckets, it cannot concurrently read or write multiple points, resulting in conflicts with the points
provided by the external DRAM. This conflict can occur when both points need to be written into
the Buckets (Gt1 and Rt1, Gt2 and Rt2) or paired with points in the Buckets (Gt3 and Rt3, Gt4 and
Rt4). Interrupting the data flow from DRAM to accommodate PADD data can result in a significant
number of pipeline bubbles in the PADD pipeline, significantly impacting computation speed.

Minimizing pipeline bubbles in PADD is crucial for accelerating MSM. This necessitates en-
hancing the success rate of point pairing. To achieve this objective, we design the Buckets using a
multi-bank structure that allocates points to different banks based on the low bits of the indexes.
Thus, if PADD output points and external input points belong to different banks, they can be inde-
pendently accessed from their respective banks. In Figure 5, both Gt1 and Rt1 need to be written
into the Buckets, as doGt3 and Rt3, which also require pairing with points in the Buckets. Utilizing
multi-FIFOs assists in efficiently storing the paired points, rather than immediately pushing them
into the PADD for processing. FIFO_U2 is introduced to receive the new pair of points allowed
under the multi-bank structure. If the point output from PADD and the external input point be-
long to the same bank and they need to be read or written, respectively, this is supported and the
corresponding point will be written to Buckets or paired with the point read from Buckets, respec-
tively. The scenario is identical to that of Gt5 and Rt5, Gt6 and Rt6. However, in scenarios where
both points require pairing with Buckets or need to be written to Buckets, conflicts may arise with
identical requests, as seen in cases like Gt2 and Rt2, Gt4 and Rt4. In this case, the external input
point is preferentially written to the Buckets or paired with the point in the Buckets. The point
output from PADD is directed to FIFO_U3 to increase its priority so that it can re-enter the pairing
circuit in subsequent cycles. Considering the scenario under “Only PADD Output,” the data sched-
uling mechanism is the same as that for the “Only New Input” stage, as depicted by Ri and Ri+1 in
Figure 5.

Therefore, PADD retrieves pairs of points from FIFO_U1 and FIFO_U2, aiming to fill its pipeline
as much as possible. Points entering FIFO_U3 will be reinserted into the matching queue. The
aforementioned explanation pertains to the scenario of a single PADD unit. However, when there
are multiple PADD units within an MSM, the PBSM can also be utilized to achieve high throughput
in MSM implementations.

Bucket Aggregation: The enhanced algorithm for this step has been thoroughly explained
in Section 3.2. We implement the proposed approach in hardware and observe significant im-
provements compared to the unoptimized version. All Sk values are stored in the Buckets. The
corresponding values are transferred from the Buckets to FIFO_U1 for processing in PADD. Sub-
sequently, the computation results from PADD are combined with the corresponding values from
the Buckets and resent to FIFO_U1. The fully pipelined PADD unit can efficiently accomplish the
bucket aggregation step.

Result Aggregation: Each reduced MSM generates one point, resulting in a total of m results.
To consolidate these outcomes into the final result, m − 1 PADD and b − c PDBL operations are

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 77. Publication date: August 2024.

PriorMSM: An Efficient Acceleration Architecture for Multi-Scalar Multiplication 77:15

Fig. 6. By observing the “head” and “tail” of the reduced scalars, the scale of indexes can be compressed to
decrease the number of buckets.

required, taking approximately (b − c +m − 1) · D clock cycles. The time required for the result
aggregation step in the overall MSM algorithm is practically negligible, and this step is divided to
be performed after each bucket aggregation step.

PriorMSM is built on multi-FIFO and multi-bank architecture with a PBSM. This design maxi-
mizes the pairing rate of points, thereby minimizing bubbles in the PADD pipeline. According to
the analysis in Section 3.2, the number of PADD operations required in the bucket classification
step in a fixed-size MSM can be predicted within a small range. Therefore, reducing the bubbles
in the PADD pipeline leads to the depreciation of computation time.

In our proposed architecture, window size directly impacts the number of buckets, thereby af-
fecting both area and cost. Moreover, it plays a crucial role in determining the implementation
speed of MSM. Therefore, the selection of the window size cannot be arbitrary. In Section 4.1, we
introduce ATP, which comprehensively considers both area cost and performance, to determine
the recommended window size for our architecture. This is a reference for optimizing the balance
between area cost and performance.

3.4 ωNAF and Precomputation

Within the bucket method, the number of buckets is contingent upon the window size c . It is
essential to note that a larger c brings about a proportional increase in the area overhead, necessi-
tated by the storage of 2c − 1 points. Our objective is to diminish the number of buckets without
compromising the window size, with the ultimate aim of reducing the associated area overhead.

Points on an elliptic curve possess a distinctive property: in affine coordinates, transforming
a point G to −G is a cost-effective operation that only requires negating the X coordinate to ob-
tain −X . We can leverage this property to obtain −Gi from Gi easily. Furthermore, the unsigned
scalar with b-bit can be converted to a group of signed representations with c-bit as follows:
unsiдned (ai(m−1), . . . ,ai1,ai0) → (siдned ai(m−1), . . . , siдned ai1, siдned ai0). This step serves as
a preprocessing stage and can be accomplished during scalar generation. This property has been
leveraged in [2, 35] to enhance the area efficiency. Building upon this approach, we extend the
optimization to attain superior area performance. In [36], two points are supplied per cycle. In
contrast, our architecture operates with a requirement of only one point per cycle. Nevertheless,
we hope to maximize the utilization of the available bandwidth. To achieve this, we propose incor-
porating the double version of point Gi , denoted as 2Gi , in each cycle. When 2Gi is selected, the
corresponding index ai j is halved. In simple terms, ai j ×Gi is equivalent to

ai j

2 × 2Gi .

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 77. Publication date: August 2024.

77:16 C. Liu et al.

Fig. 7. Optimization rate. A lower value is better.

Through the synergistic integration of the ωNAF method [19] and the precomputation tech-
nique [18], a notable reduction in the required number of buckets can be achieved. In Figure 6,
a straightforward example is presented to illustrate the combined application of these two tech-
niques in compressing scalars. Whenever PriorMSM is provided with Gi and 2Gi , the selection
between the two points is determined by the lowest bit of ai j . Additionally, the sign bit, which is
the highest bit of ai j , is examined. When it is 1 (indicating a negative value), PriorMSM discards it
and utilizes the remaining bits of ai j . Simultaneously, the negative version of the point is selected.
As a result, the scalar range contracts from [1, 2c] to [1, 2c−1], leading to a 50% reduction in the num-
ber of required buckets. Subsequently, the lowest bit of ai j is re-evaluated; if the reduced scalar is
even, the lowest bit of ai j is discarded. This operation effectively compresses all even scalars in
the range (1, 2c−1] to the range [1, 2c−2], resulting in a 25% reduction in the required number of
buckets. By combining these two approaches, only (1− 1

2) · (1−
1
4) · 2

c buckets are needed, leading
to a substantial 62.5% saving in on-chip storage usage.

4 Evaluation

4.1 Design Sensitive Analysis

We evaluate the effectiveness of PriorMSM across a range of degrees, spanning from 220 to 226,
and with varying window sizes ranging from 8 bits to 16 bits. We examine two key factors that
could impact the efficiency of our proposed architecture. The initial factor under consideration is
the partitioning algorithm discussed in Section 3.2. The fully pipelined PADD unit opens avenues
for harnessing the parallelism inherent in the bucket aggregation step. This partitioning algorithm
significantly reduces the time required for the bucket aggregation step, a process solely dependent
on the window size. In our design, we strategically partition the Buckets into 16 groups to facilitate
parallel processing, taking into account both efficiency and design complexity. In Figure 7, the
optimization rate statistics for different windows are presented, highlighting that our partitioning
algorithm leads to substantial improvements in a single bucket aggregation step.

The magnitude of improvement corresponds directly to the window size, with notable gains ob-
served as the size increases. Specifically, when the window size is set to 16 bits, the optimization rate

is 6.69%. This means that the optimized bucket aggregation step consumes only about 6.69% of the
clock cycles compared to the unoptimized version. The figure also implies the presence of an upper
limit to the improvement effect, potentially dictated by the number of partitions. While adjusting

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 77. Publication date: August 2024.

PriorMSM: An Efficient Acceleration Architecture for Multi-Scalar Multiplication 77:17

Fig. 8. Proportion of saved clock cycles with our optimization method in MSM.

the number of partitions might yield even more favorable results, it is essential to acknowledge
that such optimization could introduce greater complexity to the hardware implementation. This
aspect remains a topic for future exploration and consideration.

While the enhancement of the partitioning algorithm significantly improves the bucket aggre-
gation step, our primary emphasis is on optimizing the reduced MSM, encompassing the bucket
classification, bucket aggregation, and result aggregation steps. Figure 8 illustrates the percent-
age of clock cycles saved during the MSM calculation for different window sizes, showcasing the
impact of our optimization method. The enhancements in MSM are notably more pronounced for
larger window sizes, as the clock cycle consumption in the bucket aggregation step is already com-
paratively low for smaller window sizes. Nonetheless, the smaller disparity between the degree of
MSM and window size can lead to a non-negligible clock cycle consumption in the bucket aggre-
gation step, emerging as a potential bottleneck for MSM. As an illustration, when the degree is 220

and the window size is 16, the partitioning algorithm saves 68.18% of the clock cycle consumption.
Remarkably, even in the case of MSM with a degree of 226, it still contributes to an approximately
3.80% improvement in clock cycle consumption.

We are also curious about the impact of window size on the number of clock cycles consumed
by the MSM. In Figure 9, it is evident that MSM with a larger window size necessitates fewer clock
cycles, irrespective of the degree of the MSM. In pursuit of a deeper comprehension of the factors
contributing to this observation, we gather data on the average number of clock cycles consumed
by the reduced MSM and present it graphically in Figure 10(a). Our findings indicate that this data
is predominantly contingent on the degree of the MSM. With an increase in the degree, the aver-
age number of clock cycles consumed per point in the reduced MSM tends to converge toward 1.
Notably, while MSM with a larger window size results in fewer clock cycles consumed, the window
size has minimal impact on this trend. This conclusion aligns with our intuition, as a reduction in
buckets necessitates more PADD operations. The overall number of clock cycles is computed as
the sum of the clock cycles consumed by m reduced MSMs, reinforcing the observed trend.

As the value of c decreases,m increases, resulting in a higher number of clock cycles consumed
by the MSM, and conversely, selecting a higher value of c leads to significantly larger areas,

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 77. Publication date: August 2024.

77:18 C. Liu et al.

Fig. 9. Total cc consumed by overall MSM with different window sizes and degrees ranging from 220 to 226.

exhibiting exponential growth. Consequently, achieving an optimal tradeoff between area and
performance necessitates the selection of a suitable value for c .

Moreover, when examining the execution time and area of our proposed design across different
values of c ranging from 8 to 16, we depict the ATP for various window size selections in Fig-
ure 10(b). Smaller ATP values are preferred. Figure 10(b) indicates that, in general, a window size
of 12 achieves the optimal balance between performance and area (smallest ATP). As the window
size increases, ATP sharply rises. This is due to the exponential growth of the bucket’s area when
the window size increases. However, the reduction in execution time diminishes at a decreasing
rate. When the window size becomes sufficiently large, the corresponding bucket’s area surpasses
that of other units by a significant margin. Essentially, the limiting factor for improving MSM
performance lies in the inadequate computational power of the PADD module. Increasing the
number of PADD modules would address this, but it introduces larger area requirements and
more pipeline bubbles. Moreover, it leads to a linear increase in bandwidth demands.

4.2 Evaluation of Our Implementation

PriorMSM is implemented in Verilog HDL. We synthesize PriorMSM using the Synopsys Design
Compiler in the TSMC 28 nm process to assess its performance. The hardware is evaluated based
on the BLS12-377 curve, with a scalar of 253 bits, eight Bucket banks, and a point represented in
extended coordinates with 4*377 bits. We choose a window size of 12, which is determined based
on the analysis of ATP in Section 4.1. This value represents our optimal choice after considering
the tradeoff between performance and cost.

Synthesis reports indicate that our MSM architecture can run at 1 GHz in the TSMC 28 nm
process. More details about the area and power consumption are shown in Table 5. It can be seen
that the majority of the area and power consumption are attributed to the PADD and Buckets.
Therefore, devising an efficient PADD, combined with implementing various strategies to dimin-
ish the number of buckets, signifies a promising avenue toward constructing a high-performance
architecture.

For functionality testing, we use Synopsys VCS and Verdi tools to conduct simulation tests on
PriorMSM and various exploratory experiments, to calculate their specific cycle counts and cor-
responding computational times. We perform multiple simulation tests with different datasets to

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 77. Publication date: August 2024.

PriorMSM: An Efficient Acceleration Architecture for Multi-Scalar Multiplication 77:19

Fig. 10. (a) Average cc consumed by reduced MSM with different window sizes and degrees ranging from
220 to 226. (b) Area-Time Product (ATP) with MSM with a degree from 220 to 226 in different window sizes.
The smaller the ATP, the better. The star symbol represents the minimum ATP value and its corresponding
window size. The dashed line represents the average ATP within this range of degrees.

Table 5. Area and Power Consumptions of PriorMSM

Module Submodule Area (mm2) Power (W)

MSM

PADD 5.22 (56.7%) 3.81 (69.8%)

mul 0.540 0.21

Buckets 3.44 (37.3%) 1.16 (21.2%)

FIFOs 0.294 (3.2%) 0.26 (4.8%)

Others 0.256 (2.8%) 0.23 (4.2%)

Overall 9.21 5.46

ensure the data’s reliability and robustness against extreme scenarios. The datasets comprise
points from the BLS12-377 curve, commonly utilized in real-world ZKP applications. Scalars
are randomly generated based on their corresponding bit lengths. These randomly generated
scalars exhibit characteristics of random distribution and unpredictability, aligning with practical
scenarios.

We evaluate the performance of PriorMSM (single PADD unit) with degrees ranging from 216

to 226 and compare it with the previous works as shown in Table 6. In actual runtime, scalars and
points are stored in external DRAM and sequentially read into the PriorMSM through a small-
capacity cache. DRAM effortlessly accommodates the storage of this data; when the degree is 226,
the total size of points and scalars is 20 GB. DRAM can also satisfy the required bandwidth for
our operations. In Table 6, the "-" symbol indicates that there is no comparative data available
for that particular degree range. Benchmark in PipeZK [36] is based on curve BLS12-381, and
with slightly different from BLS12-377. Due to the implementation of a fully pipelined PADD, we
largely disregard the impact of these differences on the runtime evaluation of MSM, as they only
affect the design of the PADD unit. The speedup in Table 6 is relative to the best performance of

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 77. Publication date: August 2024.

77:20 C. Liu et al.

Table 6. Comparison of the Execution Time (ms) of PriorMSM with Different Degrees with Previous Works

Implementation Platform Power
Area/

Resources

Degree

216 217 218 219 220 221 222 223 224 225 226

PipeZK1 [36]
UMC 28nm

300 MHz
2.38 W 16.86 mm2 22 46 92 184 368 − − − − − −

cuZK [26]
Nvidia V100

−
− − − − − 27 47 90 171 312 − − −

GZKP [27]
Nvidia V100

−
− − 7 − 20 − 62 − 240 − 1,100 − 4,000

Hardcaml [3]
Xilinx VU9P

278 MHz
−

387k LUTs

733k REGs

2,999 DSPs

883.5 RAMs

− − − 499 540 620 780 1,094 − − −

PipeMSM [35]
Xilinx U55C

125 MHz
34.9 W − 17.6 35.9 68.8 136.6 273.0 − − − − − −

CycloneMSM [2]
AWS F1

250 MHz
43.47 W

526k LUTs

661k REGs

2277 DSPs

623 RAMs

− − − − − − 817.9 1,133 1,761 3,016 5,656

BSTMSM [37]
Xilinx U250

300 MHz
−

410k LUTs

744k REGs

2,920 DSPs

623 RAMs

− − 23 40 75 145 285 564 1,124 2,242 4,479

PriorMSM2 TSMC 28 nm

1 GHz
5.26 W 9.21 mm2 1.8

(3.9×)

3.3

(10.9×)

6.2

(3.2×)

12

(2.3×)

24

(2.0×)

47

(1.9×)

95

(1.8×)

189

(1.7×)

377

(2.9×)

754

(3.0×)

1509

(2.7×)

1PipeZK utilizes two PEs in MSM. To estimate the performance of PipeZK with a single PE configuration, we simply

double the latency, while halving the area and power consumption.
2 The speedup is relative to the best performance of previous works with the same degree.

previous works with the same degree. The results indicate that our design can achieve a significant
improvement in latency.

We separately discuss its comparison with GPU implementations and its comparison with
custom hardware implementations. Compared to the GPU implementations [26, 27], PriorMSM
achieves a minimum speedup of 1.7×. At MSM with degree 226, it can achieve a maximum speedup
of 3.9×. Compared to the custom hardware implementations [2, 3, 35–37], PriorMSM can achieve
a maximum speedup of 10.9×, particularly at MSM with degree 217. Thanks to the pipeline design
of PriorMSM, the proposed architecture can achieve a running frequency of 1 GHz in the TSMC 28
nm process. This frequency surpasses the operating frequency of the previous custom hardware
implementations. Additionally, these custom hardware implementations do not have uniform set-
tings for window size (as shown in Figure 9, where different window sizes profoundly impact the
latency of MSM). To ensure a fair comparison, we normalize the latency of each work based on
the window size and frequency. We use the normalized clock cycle count as a common reference
for comparison. As shown in Table 7, we present the relative speedup of our proposed design
compared to other works, assuming a speedup of 1 for PriorMSM. A lower value indicates better
performance. Due to the larger area and greater computational and storage resources of GPUs, as
well as their dynamically high frequencies, it is not feasible to normalize and obtain clock cycle
counts of GPU-based works. Furthermore, the design principles behind GPU-based works differ
from those of custom circuit-based designs. Therefore, in Table 7, we primarily compare PriorMSM
with other works based on FPGA and ASIC to explore the advantages of our architecture relative
to baseline designs.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 77. Publication date: August 2024.

PriorMSM: An Efficient Acceleration Architecture for Multi-Scalar Multiplication 77:21

Table 7. Normalized Comparison of Clock Cycle Counts for PriorMSM and Previous Works with Various
Degrees1

Implementation2 Degree

216 217 218 219 220 221 222 223 224 225 226

PipeZK [36] 1.22× 1.39× 1.48× 1.53× 1.53× − − − − − −

Hardcaml [3] − − − 12.5× 6.75× 3.96× 2.46× 1.74× − − −

PipeMSM [35] 1.22× 1.36× 1.39× 1.42× 1.42× − − − − − −

CycloneMSM [2] − − − − − − 2.87× 2.00× 1.56× 1.33× 1.25×

BSTMSM [37] − − 1.21× 1.08× 1.02× 1.00× 0.98× 0.97× 0.97× 0.97× 0.96×

PriorMSM 1× 1× 1× 1× 1× 1× 1× 1× 1× 1× 1×

1Speedup data are based on normalized window size and frequency in terms of the number of clock cycles.
2In PriorMSM, we set c = 12, when CycloneMSM sets c = 16, PipeMSM sets c = 12, PipeZK sets c = 4, and Hardcaml

and BSTMSM set c = 13.

From Table 7, it can be observed that even without considering the impact of operating fre-
quency and window size, our proposed design still achieves an improvement in clock cycle counts.
We have overcome many shortcomings present in previous works, resulting in at least a 22%
improvement in clock cycle counts compared to previous custom hardware-based works except
BSTMSM [37]. This enhancement stems from the advantages of our proposed architecture, which
includes multi-FIFO and multi-bank architectures based on PBSM, efficient bucket aggregation
step improvements, and efficient PADD unit implementations. We believe that the point pairing
and scheduling mechanisms of PipeZK [36] and PipeMSM [35] are rather conservative, and the
selection of window size in PipeZK is also conservative, with insufficient hardware-friendly de-
signs for buckets. This leads to excessive data backpressure and pipeline bubbles, which could
be further improved by increasing the point pairing rate. Our proposed multi-FIFO and multi-
bank architecture aims to maximize the point pairing rate and accommodate more pending point
pairs, thus achieving higher overall pipeline efficiency and ultimately yielding significant per-
formance improvements. CycloneMSM [2] and Hardcaml [3] employ a mixadd-based PADD de-
sign, which introduces data dependencies during point pairing. This limitation arises because
points output from PADD can only be added with external input points, rather than support-
ing point addition between two points output from PADD. In other words, this approach also
reduces the success rate of pairings. In contrast, our design employs a multi-FIFO and multi-
bank architecture based on PBSM, facilitating the addition of all types of points within our ar-
chitecture and minimizing unnecessary pipeline stalls, thereby achieving higher utilization of
PADD units and further enhancing the implementation speed of MSM. It should be noted that
our proposed MSM hardware architecture supports the bucket classification step, bucket aggrega-
tion step, and result aggregation step. In contrast, PipeZK [36], CycloneMSM [2], and Hardcaml
[3] only support the former. Hence, our work provides a more comprehensive implementation
for MSM.

BSTMSM has implemented all three steps of the Pippenger algorithm and achieves a maximum
4% faster implementation speed compared to our proposed design. We believe this is because
BSTMSM utilizes true dual-port SRAM as the Buckets, which has a larger area compared to the
simple dual-port SRAM we use. Additionally, BSTMSM employs an SRAM capacity equivalent to
4
3m times our reduced MSMs (wherem = 22 when the window size is 12), resulting in an effective

area exceeding 100 mm2 (as referenced in Table 5). Despite this, more buckets enable them to store
a substantial amount of intermediate data and efficiently process it, leveraging the pipeline charac-
teristics of the PADD unit. However, this results in the buckets occupying a significant proportion

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 77. Publication date: August 2024.

77:22 C. Liu et al.

Fig. 11. Time breakdown of the classification and aggregation steps of MSM with degrees form 216 to 226.
The aggregation step includes bucket aggregation and result aggregation. 0.0% represents a negligible portion
of time.

of the chip area. From an ATP perspective, this approach is highly impractical. The substantial in-
crease in area only leads to a marginal, even negligible, reduction in latency. Moreover, the larger
bucket’s area also introduces higher power consumption and presents challenges in layout and
routing, thereby impacting performance. In contrast, PriorMSM achieves the same functionality
with 288 KB of cache while maintaining nearly consistent speeds. In Figure 11, we present the time
breakdown for the classification step and aggregation step of PriorMSM with degrees from 216 to
226. It can be observed that the time for MSM is primarily determined by the classification step,
and as the degree of MSM increases, the time for the aggregation step becomes almost negligible.
This is because the clock cycle count for the classification step is largely determined by the degree
of MSM, while the clock cycle consumption for the aggregation step is determined solely by the
window size. With the window size fixed, the clock cycle count for the aggregation step remains
constant. When the degree of MSM is relatively low, the aggregation step can become a bottleneck
for the implementation of MSM. We optimize the aggregation step using the pipelining charac-
teristics of PADD, reducing its time proportion with only a limited bucket capacity. As a result,
our optimization eliminates the constraint of the aggregation step on the implementation time of
MSM. Here, we set the window size to 12. If the degree of MSM is smaller or larger, it might be
necessary to reconsider the value of window size. However, the MSM degree we select is within
the range of commonly used parameters.

Similarly, we also analyze the reasons for not using single-port SRAM as Buckets. While single-
port SRAM with the same capacity incurs less area overhead, it significantly hampers performance
as it only supports read or write operations within the same cycle. We theoretically analyze
this scenario: if both the new input point and output point from PADD are valid and belong to
the same bank (with a theoretical probability of 1

8 , given the eight banks), concurrent read and

write operations are no longer supported (with a theoretical probability of 1
2). As a result, more

points are frequently directed to FIFO_U3 to elevate its priority. Theoretically, this would result
in a 1

16 increase in latency; however, we anticipate even longer latency in practice. This scenario
reduces the success rate of pairings, impacting PADD utilization and introducing more pipeline
bubbles. These bubbles propagate back to the Scheduler, further diminishing the success rate
of pairings.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 77. Publication date: August 2024.

PriorMSM: An Efficient Acceleration Architecture for Multi-Scalar Multiplication 77:23

We also conduct a brief statistical analysis on the power consumption and resource utilization
of different designs, which we present in Table 6. The analysis of power consumption and re-
source utilization here does not apply to GPU-based designs because GPUs are power-intensive
devices with abundant resources. Unknown data is represented with a dash, “-”. MSM designs
are characterized by high resource consumption. Even when using high-end Xilinx FPGAs, im-
plementing MSMs on them is not an easy task due to the limitations imposed by the quantity of
DSPs and SRAM available on the FPGA. Integrating multiple MSMs on a single FPGA to enhance
performance is quite challenging. We also need to consider resource redundancy to achieve bet-
ter layout and routing, which translates to higher operating frequency. This, however, limits the
resource utilization of the FPGA. During runtime, many LUTs and FFs remain idle, resulting in
wasted silicon area. For instance, in HARDCAML, DSP utilization is 43% and URAM utilization is
nearly 50%, but LUTs and register utilization is only 30%. Additionally, their operating frequency
is still restricted, and they incur a significant power consumption cost. For instance, PipeMSM still
generates a power overhead of 34.9 W when running at 125 MHz. Of course, this is a characteris-
tic inherent to FPGA devices. ASIC designs are more suitable for balancing performance and area
because we can adopt a more balanced allocation of cache and computational resources, guided by
ATP metrics. In our ASIC-based design, all logic resources are maximally utilized to achieve better
area efficiency. We have also implemented optimizations to enhance hardware utilization, such as
improving the bucket aggregation algorithm to fully leverage the pipelining features of the PADD
unit and the multi-bank bucket structure. In the 28 nm process, our synthesis tool reports an area
overhead of 9.21 mm2 and a power overhead of 5.26 W. Compared to PipeZK, although we choose
a different process technology, considering that our design can operate at 1 GHz, significantly
higher than PipeZK’s target frequency of 300 MHz, PriorMSM incurs higher power consumption.
In terms of area consumption, we believe that PriorMSM features a more optimized PADD design
and improved on-chip memory utilization, hence resulting in a smaller area overhead compared
to PipeZK.

Furthermore, design sensitivity analysis has guided our parameter selection, a consideration
lacking in previous works. Our choice of window size is informed by an analysis of the ATP met-
ric, aiming to strike an optimal balance between performance and area overhead. Similarly, we
are also interested in how hardware utilization affects the performance and resource overhead of
other works under different parameter configurations. Unfortunately, previous works have not
discussed the impact of hardware utilization on the implementation of MSM accelerators. This
underscores the importance of our experiments, where design sensitivity analysis aids in a more
detailed exploration of the implementation of MSM accelerators in practice.

5 Conclusion

In this article, we present PriorMSM, an efficient hardware architecture designed to accelerate
Multi-Scalar Multiplication. The architecture adopts the bucket method, augmented by a Priority-
Based Scheduling Mechanism aimed at minimizing pipeline bubbles during MSM computation,
thereby optimizing PADD utilization. We propose a novel bucket aggregation algorithm, resulting
in a significant reduction in the time required for this crucial step. Additionally, the article delves
into strategies for minimizing on-chip SRAM area through the utilization of theωNAF method and
precomputation techniques. We delve into the sensitivity of MSM design to window size. Exper-
imental data suggests that higher window sizes lead to nearly proportional speed improvements,
given the optimization of the bucket aggregation step. We use the ATP metric to find the opti-
mal window size for both area and performance in PriorMSM, guiding practical applications and
future works. Furthermore, we highlight the performance improvements achieved by PriorMSM
using the TSMC 28 nm process and Synopsys Design Compiler tools.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 77. Publication date: August 2024.

77:24 C. Liu et al.

Appendix

A Mathematical Analysis of the Optimized Bucket Method

According to Algorithm 1, we can make a rough estimation of the number of point additions re-
quired for MSM, denoted as t . In the bucket classification step, a total of m(N − 2c + 1) PADD
operations are necessary. The bucket aggregation step requires m(2c+1 − 2) PADD operations. Fi-
nally, during the result aggregation step, b − c +m − 1 PADD operations are needed. Hence, t can
be determined as follows:

t =m(N + 2c) + b − c . (16)

In the bucket classification step, required clock cycles can be roughly estimated asm(N −2c +1),
considering that the PADD operations among buckets with different indexes are mutually indepen-
dent, and the PADD unit is fully pipelined. Nonetheless, the actual number of clock cycles needed
is slightly greater than this value, taking into account factors such as pipeline initialization, delays
from conflicts, and pipeline stalling. If N is adequately large, the value of t can be approximated
by m(N − 2c + 1), as demonstrated in Section 4. In the bucket aggregation and result aggregation
steps, considering the dependencies between intermediate values during computation, the number
of clock cycles can be represented as (m(2c+1 − 2) + b − c − 1) · D.

In terms of the number of clock cycles consumed by the bucket aggregation step, the optimiza-
tion achieved through the partitioning algorithm in bucket aggregation allows for significant
improvements. We can divide all bucket values into H groups, rewriting Equation (11) as
Equation (14). The naive method, as referenced in Algorithm 1, can be employed to accomplish
bucket aggregation for each group. The total number of PADD operations is 2 · M · H , which
is equivalent to 2c+1. The number of clock cycles consumed in computing the first term of
Equation (14) is presented as

M · D + 2H . (17)

In Equation (17), the aggregation of each distinct group is tightly organized within the pipeline.
Therefore, it is necessary to consider only the clock cycles corresponding to the number of
groups during entry and exit from the pipeline. This is also the essence of why this optimization
algorithm achieves significant results, as we fully utilize the pipeline for the PADD unit.

Subsequently, we utilize intermediate values during the computation of the first term to obtain
the second term of Equation (14) by multiplying it with (h − 1) ·M . We aggregate the second term
of Equation (14) together. The estimated time consumption for this step is

((c − 2) + log2(H − 1)) · D. (18)

Finally, we aggregate each first term of the H groups together and add it to the aggregated result
of the second term of Equation (14), obtaining the bucket aggregation result. The number of clock
cycles consumed is

(log2 H + 1) · D. (19)

Therefore, summarily, with these enhancements, the total number of clock cycles consumed in the
optimized bucket aggregation step in the reduced MSM is the sum of Equations (17) through (19),
as shown in Equation (20):

((c +M − 1) + 2 log2 H) · D + 2H . (20)

On the other hand, the number of clock cycles consumed by the unoptimized bucket aggregation
step in the reduced MSM is given by Equation (21):

(2c − 1) · D. (21)

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 77. Publication date: August 2024.

PriorMSM: An Efficient Acceleration Architecture for Multi-Scalar Multiplication 77:25

We introduce optimization rate, calculated as Equation (20) divided by Equation (21), as a measure
of the effectiveness of our proposed partitioning optimization algorithm on the bucket aggregation
step, as shown in Equation (22):

(c +M − 1) + 2 log2 H

2c − 1
+

2H

(2c − 1) · D
. (22)

References

[1] Wikipedia contributors. 2024. Montgomery curve. Retrieved November 13, 2023 from https://en.wikipedia.org/wiki/

Montgomery_curve.

[2] Kaveh Aasaraai, Don Beaver, Emanuele Cesena, Rahul Maganti, Nicolas Stalder, and Javier Varela. 2022. FPGA accel-

eration of multi-scalar multiplication: CycloneMSM. Cryptology ePrint Archive, Paper 2022/1396. https://eprint.iacr.

org/2022/1396

[3] Ben Devlin and Andy Ray. [n. d.]. HARDCAML. Retrieved October 15, 2023 from https://zprize.hardcaml.com/msm-

overview.html

[4] Diego F. Aranha, Youssef El Housni, and Aurore Guillevic. 2022. A survey of elliptic curves for proof systems. Designs,

Codes and Cryptography (2022), 1–46.

[5] Utsav Banerjee and Anantha P. Chandrakasan. 2021. A low-power BLS12-381 pairing cryptoprocessor for Internet-

of-Things security applications. IEEE Solid-State Circuits Letters 4 (2021), 190–193. https://doi.org/10.1109/LSSC.2021.

3124074

[6] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. 2014. Succinct non-interactive zero knowledge for

a von Neumann architecture. In Proceedings of the 23rd USENIX Conference on Security Symposium (SEC’14). USENIX

Association, 781–796.

[7] Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Christiane Peters. 2008. Twisted Edwards curves.

In Progress in Cryptology: First International Conference on Cryptology in Africa (AFRICACRYPT’08), Proceedings 1.

Springer, 389–405.

[8] Gautam Botrel, Thomas Piellard, Youssef El Housni, Ivo Kubjas, and Arya Tabaie. 2023. ConsenSys/gnark: v0.8.0. https:

//doi.org/10.5281/zenodo.5819104

[9] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell. 2018. Bulletproofs:

Short proofs for confidential transactions and more. In 2018 IEEE Symposium on Security and Privacy (SP’18). 315–334.

https://doi.org/10.1109/SP.2018.00020

[10] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and Nicholas Ward. 2020. Marlin: Pre-

processing zkSNARKs with universal and updatable SRS. In Advances in Cryptology (EUROCRYPT’20), Anne Canteaut

and Yuval Ishai (Eds.). Springer International Publishing, Cham, 738–768.

[11] Craig Costello and Benjamin Smith. 2017. Montgomery Curves and their Arithmetic: The Case of Large Characteristic

Fields. Cryptology ePrint Archive, Paper 2017/212. https://eprint.iacr.org/2017/212

[12] Tanja Lange and Daniel J. Bernstein. [n. d.]. Explicit-Formulas Database. Retrieved November 11, 2023 from https:

//www.hyperelliptic.org/EFD/

[13] David Gabay, Kemal Akkaya, and Mumin Cebe. 2020. Privacy-preserving authentication scheme for connected elec-

tric vehicles using blockchain and zero knowledge proofs. IEEE Transactions on Vehicular Technology 69, 6 (2020),

5760–5772. https://doi.org/10.1109/TVT.2020.2977361

[14] Ariel Gabizon, Zachary J. Williamson, and Oana-Madalina Ciobotaru. 2019. PLONK: Permutations over LaGrange-

bases for oecumenical noninteractive arguments of knowledge. IACR Cryptology ePrint Archive, Paper 2019/953.

https://api.semanticscholar.org/CorpusID:201685538

[15] S. Goldwasser, S. Micali, and C. Rackoff. 1985. The knowledge complexity of interactive proof-systems. (1985), 291–304.

https://doi.org/10.1145/22145.22178

[16] G. Gong. 2023. Speeding up Multi-Scalar multiplication over fixed points. Retrieved November 11, 2023 from http:

//www.fields.utoronto.ca/talks/Speeding-Multi-Scalar-Multiplication-over-Fixed-Points

[17] Jens Groth. 2016. On the size of pairing-based non-interactive arguments. In Annual International Conference on the

Theory and Applications of Cryptographic Techniques. Springer, 305–326.

[18] G. Gutoski. [n. d.]. Multi-Scalar Multiplication: State of the Art and New Ideas. Retrieved February 22, 2023 from

https://www.slideshare.net/GusGutoski/multiscalar-multiplication-state-of-the-art-and-new-ideas

[19] D. Hankerson, A. J. Menezes, and S. Vanstone. 2006. Guide to Elliptic Curve Cryptography. Springer New York. https:

//books.google.com/books?id=V5oACAAAQBAJ

[20] Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Dawson. 2008. Twisted Edwards curves revisited. In

International Conference on the Theory and Application of Cryptology and Information Security. Springer, 326–343.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 77. Publication date: August 2024.

https://en.wikipedia.org/wiki/Montgomery_curve
https://eprint.iacr.org/2022/1396
https://zprize.hardcaml.com/msm-overview.html
https://doi.org/10.1109/LSSC.2021.3124074
https://doi.org/10.5281/zenodo.5819104
https://doi.org/10.1109/SP.2018.00020
https://eprint.iacr.org/2017/212
https://www.hyperelliptic.org/EFD/
https://doi.org/10.1109/TVT.2020.2977361
https://api.semanticscholar.org/CorpusID:201685538
https://doi.org/10.1145/22145.22178
http://www.fields.utoronto.ca/talks/Speeding-Multi-Scalar-Multiplication-over-Fixed-Points
https://www.slideshare.net/GusGutoski/multiscalar-multiplication-state-of-the-art-and-new-ideas
https://books.google.com/books?id=V5oACAAAQBAJ

77:26 C. Liu et al.

[21] Youssef El Housni and Gautam Botrel. 2022. EdMSM: Multi-scalar-multiplication for SNARKs and faster montgomery

multiplication. Cryptology ePrint Archive, Paper 2022/1400. https://eprint.iacr.org/2022/1400

[22] Haiping Huang, Peng Zhu, Fu Xiao, Xiang Sun, and Qinglong Huang. 2020. A blockchain-based scheme for privacy-

preserving and secure sharing of medical data. Computers & Security 99 (2020), 102010.

[23] Anatolii Alekseevich Karatsuba and Yu P. Ofman. 1962. Multiplication of many-digital numbers by automatic com-

puters. In Doklady Akademii Nauk, Vol. 145. Russian Academy of Sciences, 293–294.

[24] Zia U. A. Khan and Mohammed Benaissa. 2016. High-speed and low-latency ECC processor implementation over

GF(2m) on FPGA. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 25, 1 (2016), 165–176.

[25] Changxu Liu, Hao Zhou, Lan Yang, Jiamin Xu, Patrick Dai, and Fan Yang. 2024. Gypsophila: A scalable and bandwidth-

optimized multi-scalar multiplication architecture. In 2024 61st ACM/IEEE Design Automation Conference (DAC’24).

[26] Tao Lu, Chengkun Wei, Ruijing Yu, Yi Chen, Li Wang, Chaochao Chen, Zeke Wang, and Wenzhi Chen. 2022. cuZK: Ac-

celerating Zero-Knowledge Proof with a Faster Parallel Multi-Scalar Multiplication Algorithm on GPUs. Cryptology

ePrint Archive, Paper 2022/1321. https://eprint.iacr.org/2022/1321

[27] Weiliang Ma, Qian Xiong, Xuanhua Shi, Xiaosong Ma, Hai Jin, Haozhao Kuang, Mingyu Gao, Ye Zhang, Haichen

Shen, and Weifang Hu. 2023. GZKP: A GPU accelerated zero-knowledge proof system. In Proceedings of the 28th

ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2

(ASPLOS’23). Association for Computing Machinery, New York, NY, USA, 340–353. https://doi.org/10.1145/3575693.

3575711

[28] Omer Shlomovits. [n. d.]. Introduction to ECNTT from StarkWare Sessions 2023. Retrieved November 12, 2023 from

https://medium.com/@ingonyama/intro-to-ecntt-from-starkware-sessions-2023-2aa2cede9fe6

[29] Nicholas Pippenger. 1976. On the evaluation of powers and related problems. In 17th Annual Symposium on Founda-

tions of Computer Science (SFCS’76). 258–263. https://doi.org/10.1109/SFCS.1976.21

[30] Niels Pirotte, Jo Vliegen, Lejla Batina, and Nele Mentens. 2018. Design of a fully balanced ASIC coprocessor imple-

menting complete addition formulas on Weierstrass elliptic curves. In 2018 21st Euromicro Conference on Digital System

Design (DSD’18). 545–552. https://doi.org/10.1109/DSD.2018.00095

[31] Bahram Rashidi. 2017. A survey on hardware implementations of elliptic curve cryptosystems. arXiv preprint

arXiv:1710.08336 (2017).

[32] Bahram Rashidi. 2018. Efficient hardware implementations of point multiplication for binary Edwards curves. Inter-

national Journal of Circuit Theory and Applications 46, 8 (2018), 1516–1533.

[33] Bahram Rashidi, Sayed Masoud Sayedi, and Reza Rezaeian Farashahi. 2016. An efficient and high-speed VLSI imple-

mentation of optimal normal basis multiplication over GF(2m). Integration 55 (2016), 138–154. https://doi.org/10.1016/

j.vlsi.2016.05.006

[34] Raziyeh Salarifard, Siavash Bayat-Sarmadi, and Hatameh Mosanaei-Boorani. 2018. A low-latency and low-complexity

point-multiplication in ECC. IEEE Transactions on Circuits and Systems I: Regular Papers 65, 9 (2018), 2869–2877. https:

//doi.org/10.1109/TCSI.2018.2801118

[35] Charles F. Xavier. 2022. PipeMSM: Hardware acceleration for multi-scalar multiplication. Cryptology ePrint Archive,

Paper 2022/999. https://eprint.iacr.org/2022/999

[36] Ye Zhang, Shuo Wang, Xian Zhang, Jiangbin Dong, Xingzhong Mao, Fan Long, Cong Wang, Dong Zhou, Mingyu Gao,

and Guangyu Sun. 2021. PipeZK: Accelerating zero-knowledge proof with a pipelined architecture. In 2021 ACM/IEEE

48th Annual International Symposium on Computer Architecture (ISCA’21). 416–428. https://doi.org/10.1109/ISCA52012.

2021.00040

[37] Baoze Zhao, Wenjin Huang, Tianrui Li, and Yihua Huang. 2023. BSTMSM: A high-performance FPGA-based multi-

scalar multiplication hardware accelerator. In 2023 International Conference on Field Programmable Technology

(ICFPT’23). 35–43. https://doi.org/10.1109/ICFPT59805.2023.00009

[38] Xudong Zhu, Haoqi He, Zhengbang Yang, Yi Deng, Lutan Zhao, and Rui Hou. 2024. Elastic MSM: A fast, elastic

and modular preprocessing technique for multi-scalar multiplication algorithm on GPUs. Cryptology ePrint Archive,

Paper 2024/057. https://eprint.iacr.org/2024/057

Received 3 March 2024; revised 1 June 2024; accepted 30 June 2024

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 77. Publication date: August 2024.

https://eprint.iacr.org/2022/1400
https://eprint.iacr.org/2022/1321
https://doi.org/10.1145/3575693.3575711
https://medium.com/@ingonyama/intro-to-ecntt-from-starkware-sessions-2023-2aa2cede9fe6
https://doi.org/10.1109/SFCS.1976.21
https://doi.org/10.1109/DSD.2018.00095
https://doi.org/10.1016/j.vlsi.2016.05.006
https://doi.org/10.1109/TCSI.2018.2801118
https://eprint.iacr.org/2022/999
https://doi.org/10.1109/ISCA52012.2021.00040
https://doi.org/10.1109/ICFPT59805.2023.00009
https://eprint.iacr.org/2024/057

