
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

Myosotis: An Efficiently Pipelined and
Parameterized Multi-Scalar Multiplication

Architecture via Data Sharing
Changxu Liu, Hao Zhou, Lan Yang, Zheng Wu, Patrick Dai, Yinlong Li, Shiyong Wu, Fan Yang, Member, IEEE,

Abstract—Zero-knowledge proof (ZKP) is a widely used
privacy-preserving technology, where Multi-Scalar Multiplication
(MSM) accounts for over 70% of the computational workload.
The acceleration of MSM can enhance the overall performance of
ZKP, making it a focal point of community attention. However,
in practical applications involving the deployment of multiple
MSM accelerators, existing designs often overlook strategies for
optimizing bandwidth and area efficiency. To address this, we
propose Myosotis, an efficiently pipelined and parameterized
Multi-Scalar Multiplication architecture. By sharing input data
and allocating cache effectively, it mitigates average transmission
bandwidth in runtime. Myosotis also supports the use of multiple
Point Addition (PADD) units to achieve performance gains,
balancing area overhead and latency for improved area efficiency.
Different parameter selection enables a trade-off between the
performance, area, and bandwidth of the MSM accelerator. When
benchmarking with MSM degrees between 218 and 226, our pro-
posed baseline design achieves up to 3.32× and 6.72× speedups
over state-of-the-art FPGA and ASIC designs. Compared to the
baseline, Myosotis with two window MSMs and one PADD unit
reduces bandwidth demand by 43% while maintaining similar
area and latency. On the other hand, Myosotis with three window
MSMs and two PADD units decreases latency by 43% and
bandwidth by 17%, with only a 9% area increase.

Index Terms—Multi-Scalar Multiplication, Zero-knowledge
proofs, Customed circuit design, Pipelined Computing

I. INTRODUCTION

Zero-knowledge proof (ZKP) [1] has gained significant
attention as a widely used privacy-preserving protocol. It is
increasingly applied in various fields, including decentralized
healthcare finance systems [2], ZK-rollups, and verifiable
computation in deep learning [3], [4]. Blockchain provides
a decentralized and tamper-proof distributed ledger [5]. ZKP
protocols are also used in blockchain to verify transactions and
ensure privacy, thereby enhancing security. We can leverage
zero-knowledge proofs to enable one party (the prover) to
demonstrate to another party (the verifier) that they possess
certain knowledge without disclosing any valuable informa-
tion.

zkSNARK (Zero-Knowledge Succinct Non-Interactive Ar-
gument of Knowledge) [6] is one of the most commonly

This work was supported in part by the National Key RD Program of China
under Grant 2023YFB2704600 and in part by the Science and Technology
Commission of Shanghai Municipality under Project 24BC3201000. Changxu
Liu, Hao Zhou, Lan Yang, Zheng Wu, and Fan Yang are with the State
Key Laboratory of Integrated Chips and Systems, School of Microelectronics,
Fudan University, Shanghai, China. Patrick Dai is with Semisand Chip Design
Pte. Ltd., Singapore. Yinlong Li and Shiyong Wu are with Shanghai Academy
of Future Internet Technology. Corresponding author: yangfan@fudan.edu.cn,
wusy@safit.org.cn

Fig. 1: A simplified accelerator schematic for ZKP proof gen-
eration phase. Multiple MSM modules and one NTT module
ensure pipeline balance in the ZKP accelerator’s data flow. The
computational capacity of an MSM accelerator mainly comes
from its pipelined PADD unit.

used zero-knowledge proof protocols. zkSNARK is charac-
terized by its small proof size, fast verification, and non-
interactive nature. However, the proof generation phase is
time-consuming and poses a computational bottleneck, ac-
counting for a significant portion of the computational load
and time. Multi-Scalar Multiplication (MSM) and Number
Theoretic Transform (NTT) are two critical computational
operations in the proof generation phase. Among these, MSM
consumes over 70% of the runtime [7]. Thus, enhancing
MSM efficiency is crucial to prevent it from hindering the
performance of algorithms.

The Pippenger Algorithm [8], also known as the bucket
method, is commonly utilized in implementing MSM. This
technique enables the segmentation of MSM into smaller
window MSMs, effectively harnessing its core— the pipelined
point addition (PADD) units—to unleash the capability for
parallel computation. Compared to the conventional double-
and-add method [9], this technique significantly enhances data
utilization, thereby increasing the computational efficiency
of MSM. However, its computational speed may still pose
bottlenecks in practical applications. Taking a simplified ZKP
accelerator as an example, as shown in Fig. 1, we explore
the application of MSM in real-world scenarios. Assuming
an ASIC implementation with 1 GHz frequency with SAM
[10] and CycloneMSM [11] as the NTT and MSM modules,
respectively, the operation time of an MSM is about 24 times
the operation time of an NTT for a polynomial-size of 224.
We have no choice but to replicate MSM accelerators for
parallel processing to achieve fully pipelined performance for
enhanced efficiency. For instance, deploying 24 MSM modules
alongside a single NTT module. However, this approach leads

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3524364

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on January 23,2025 at 15:00:47 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

to two major issues:
Bandwidth Bottleneck. As depicted in Fig. 1, both NTT

and MSM modules require external POLY/Points for calcula-
tions, leading to an unacceptable total bandwidth demand of
nearly 1.9 TB/s for MSM clusters, with each MSM requiring
83 GB/s of bandwidth. Moreover, this does not account for
additional bandwidth for the NTT module. One potential way
to optimize bandwidth requirements is by increasing window
sizes, such as 16 or even 64 [11], the resulting higher area
costs provide limited performance enhancements.

Low Area Efficiency. While bandwidth optimization allevi-
ates accelerators’ limitations, enhancing performance in MSM
primarily hinges on increasing the number of PADD units, as
depicted in Fig. 1. The standard strategy enhances the speed
at the expense of area by duplicating accelerators, facilitating
somewhat independent control and data flows. However, it
leads to the redundant duplication of many shareable circuit
components, making it an inefficient approach for area effi-
ciency. Moreover, the utilization of PADD units tends to be
relatively low.

In this paper, we introduce Myosotis, an efficiently pipelined
and parameterized Multi-Scalar Multiplication architecture,
based on the bucket method and the principles of data sharing.
Myosotis facilitates conflict-free access for multiple requests,
thereby enhancing overall pipeline performance. To reduce
the transmission bandwidth requirements, Myosotis enhances
data utilization by sharing points and efficiently allocating
caches, thereby lowering the frequency of data input trans-
missions. Additionally, in pursuit of better performance and
reduced unnecessary resource duplication overhead, Myosotis
introduces an integrated multi-PADD design, allowing us to
customize the number of window MSMs and PADD units to
be accommodated. This design enhances area efficiency by
leveraging shared circuit resources, enabling us to strike a
trade-off between latency, area, and bandwidth.

Specifically, our contributions can be summarized as fol-
lows:

• We propose an architecture supporting parallel processing
of multiple window MSMs. By sharing point data and
making efficient use of caches, this design significantly
reduces the average transmission bandwidth in runtime.
Additionally, the architecture enhances the utilization of
the PADD units, thereby improving the overall pipeline
performance.

• We propose an integrated multi-PADD design that al-
lows Myosotis to share resource logic more efficiently,
resulting in improved area efficiency. Furthermore, this
design provides Myosotis with enhanced flexibility to
accommodate trade-offs between area and latency.

Myosotis is a parametric architecture for constructing MSM,
offering more flexible parameter selections. The proposed
baseline outperforms state-of-the-art FPGA and ASIC designs,
achieving speedups of up to 3.32× and 6.72×, respectively.
Furthermore, in comparison to the baseline, Myosotis, with
two window MSMs and one PADD unit, reduces bandwidth
demand by 43% while maintaining similar area and latency.
Also, with three window MSMs and two PADD units, it

decreases latency by 43% and bandwidth by 17%, with only
a 9% area increase.

II. RELATED WORKS

Several works have already developed high-performance ac-
celerators for MSM based on the bucket method. PipeZK [12]
is an early ASIC-based accelerator for zk-SNARK, which for
the first time proposed a custom circuit solution based on the
bucket method. However, its conservative architecture design
limits scalability to larger window sizes and imposes high
bandwidth requirements, limiting its performance. Gypsophila
[13] is a scalable and bandwidth-optimized architecture for
multiple MSM tasks. It achieves streamlined data flow through
algorithmic decomposition of the bucket method and improves
throughput by sharing data and resources. However, it pri-
marily focuses on pipelining optimizations for the hardware
implementation of the bucket method, offering limited hard-
ware optimization for single MSM tasks. Despite Gypsophila’s
efforts to minimize the access conflict properties of its bucket
structure, point pairing collisions still occur in its data flow,
impacting performance. Additionally, its scalability depends
on the increase in MSM PEs, with the number of supported
window MSMs being equal to the number of PADD units.
This setup lacks flexibility and does not achieve an optimal
balance between area overhead and latency. MSMAC [14]
introduces a specially designed ISA in the MSM acceleration
architecture, highlighting the batching of point addition oper-
ations. Its runtime system can divide MSM tasks into multiple
subtasks, which are then processed separately in different PEs.
However, the specific ISA is overly simplistic, focusing more
on high-level task scheduling optimizations while neglecting
improvements in underlying hardware efficiency. ReZK [15] is
a recently released ZKP accelerator built using reconfigurable
technology, which also incorporates acceleration for MSM.
However, we believe that reconfigurable technology is not
well-suited to optimizing the computational characteristics of
MSM, and the performance improvements it achieves are
rather limited. PriorMSM [16] explores the design space of
key parameters in MSM accelerator design, but its focus
is restricted to optimizing single-engine MSM accelerators.
Additionally, its optimization objectives are limited to area and
execution time, without considering bandwidth requirements
or the construction of multi-engine MSM accelerators.

ZodiacMSM [17] is optimized for multi-chip integration
computing MSMs, featuring memory access partitioning for
improved performance and scalability. PipeMSM [18], Cy-
cloneMSM [11], HARDCAML [19], and SuperScalar [20]
are all FPGA-based MSM accelerators that optimize the
implementation from an engineering perspective, exhibiting
impressive performance. However, they still suffer from data
dependencies in the data flow, resulting in pipeline bubbles.
BSTMSM [21] is another FPGA-based MSM accelerator that
proposes a Barrel State Tracking method to reduce bucket
collisions. However, its implementation involves extensive use
of caches to store intermediate data, which, while improving
computational efficiency, is considered to have low area effi-
ciency.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3524364

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on January 23,2025 at 15:00:47 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

cuZK [7] and GZKP [22] propose GPU-based ZKP acceler-
ators that leverage on-chip cache and computational resources
of GPUs to maximize efficiency through the bucket method
and precomputation techniques, albeit with higher memory
overhead. Elastic MSM [23] focuses on enhancing the par-
allel Pippenger Algorithm on GPUs through precomputation
techniques, exploring a trade-off between storage overhead
and running time. However, using GPUs to accelerate based-
finite field operations can lead to low utilization of the GPU’s
resources that are primarily designed for floating-point oper-
ations. Additionally, their design approach is fundamentally
different from that of custom hardware.

In summary, we can identify the limitations of previous
works, which mainly focus on the following points:

• Their setups typically involve a single window MSM and
a single PADD. While some related works support multi-
window MSM and multi-PADD configurations, they often
do not allow for flexible, independent settings of the num-
ber of window MSMs and PADDs, essentially replicating
multiple sets of window MSMs and PADDs.

• Most previous works neglect the efficient utilization of
data, which is crucial for saving interface bandwidth and
reducing the area overhead of shared circuit components.

• Previous works still encounter issues with data depen-
dencies in the pipeline and conflicts when accessing the
bucket, which diminishes the utilization of PADD mod-
ules and computational efficiency. The FIFOs containing
conflicting point pairs may repeatedly reinsert conflicted
points into the original queue, potentially increasing the
frequency of interrupting burst transfers of external data,
thereby weakening performance.

• Most previous works have ignored discussions on hard-
ware parameter configurations for MSM accelerators,
thus overlooking the design space exploration for the
architectures. Consequently, the area efficiency of these
accelerators may not be optimal.

Our proposed design addresses the limitations of the pre-
vious works by supporting conflict-free access for multiple
requests and improving data utilization through sharing. This
design achieves high-performance computing with an efficient
pipelined implementation, while also considering interface
bandwidth reduction. As an accelerator architecture, reducing
bandwidth usage also helps lower costs.

III. PRELIMINARY

A. Elliptic Curves

The data for Multi-Scalar Multiplication consists of scalars
and points on elliptic curves. Considering security concerns,
computations involving points on elliptic curves are performed
within finite fields, introducing substantial complexity. Math-
ematically, the points on an elliptic curve E over the field
Fq satisfy Eq. 1, with the condition that 4a3sw + 27b2sw ̸= 0.
Eq. 1 is also known as the Short Weierstrass form of an elliptic
curve.

y2 = x3 + asw · x+ bsw. (1)

In addition to the Short Weierstrass curves, elliptic curves can
also be expressed in other forms, such as Montgomery curves,

as shown in Eq. 2, and Twisted Edwards curves, as shown
in Eq. 3. When specific conditions are met, mathematical
mappings can be applied to transform one curve form into
another. Additionally, the points on the curve also undergo
mathematical transformations [24].

Bmon · y2 = x3 +Amon · x2 + x. (2)

ate · x2 + y2 = 1 + dte · x2 · y2. (3)

Any curve can be transformed into the Short Weierstrass curve.
Additionally, each Twisted Edwards curve is birationally
equivalent to a Montgomery curve over the field K. However,
transforming an elliptic curve in the Short Weierstrass form
over the base field F to the Montgomery form requires
satisfying specific mathematical conditions [25], [26]. Due
to variations in computational complexity for point addition
and point double across different curve forms, the property of
birational equivalence between different curve forms allows us
to streamline calculations on certain elliptic curves.

Twisted Edwards curves excel in computational efficiency,
thanks to their optimized addition formula. This advantage
stems from the robust completeness property of the curve,
leading to improved performance of cryptographic protocols.
For instance, the BLS12-377 curve is a widely used curve
form. Its mathematical expression in Short Weierstrass form
is shown in Eq. 4.

y2 = x3 + 1. (4)

However, it can also be transformed into a Twisted Edwards
curve with a = −1. Due to the property of a = −1, point
addition and point double on this curve have a lower com-
putational complexity. Through convenient pre-processing, we
achieve reduced computational complexity of point operations.

In addition to considering the form of an elliptic curve,
it is crucial to select an appropriate coordinate system to
improve the efficiency and security of point operations. In
the given equations, affine coordinates (x, y) is used. Under
the affine coordinate system, the unified point addition law
requires 7 modular multiplications, 2 modular inversions, and
4 modular additions. Inefficient modular inversions can hinder
the implementation of point addition in a pipelined manner,
thereby reducing overall performance.

The use of projective coordinates (X,Y, Z) eliminates the
need for modular inversions in point addition. Affine coor-
dinates (x, y) are equivalent to (X/Z, Y/Z). Furthermore,
we highly recommend using extended projective coordinates
(X,Y, Z, T) by introducing an auxiliary coordinate T =
XY/Z. The unified point addition law based on extended pro-
jective coordinates offers lower computational complexity than
the one based on projective coordinates. Many relevant works
have adopted extended projective coordinates for constructing
the PADD unit [11], [21], which aligns with the coordinate
system selected in our paper.

B. Pippenger Algorithm

The MSM represents the outcome of point addition (PADD)
resulting from multiple scalar multiplications (SM), which is
also recognized as point multiplication (PMUL). This process

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3524364

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on January 23,2025 at 15:00:47 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

can be further dissected into a sequence of point addition
(PADD) and point double (PDBL) operations. The mathemat-
ical expression for MSM is represented by Eq. 5, where ai
represents an integer scalar, Gi denotes a point on the elliptic
curve, and the variable N signifies the degree of MSM. PDBL
and PADD operations on elliptic curves exhibit complexities
significantly higher than standard arithmetic addition opera-
tions.

MSM (⃗a,G) =

N−1∑
i=0

ai ·Gi. (5)

For problems that involve only a finite number of SMs, such
as in EdDSA [27] and other digital signature schemes, the
double-and-add method is commonly used. Some approaches
also incorporate precomputation techniques to improve the
computational efficiency of SM at the expense of increased
storage overhead [28]. Within ZKP challenges, the MSM
algorithm typically involves a large number of SMs, imply-
ing a higher degree. With the ever-increasing computational
demands of contemporary applications, N has the potential
to scale up to 220 or even 230. The Pippenger Algorithm
can markedly optimize the computational performance of
MSM. Fig. 2 presents the process of the Pippenger Algorithm.
Here, the bit width of the scalar ai is b. Each scalar ai
is segmented into m = ⌈ b

c⌉ smaller scalars, indexes, of c-
bit each, represented as ai = concat{aij}. We refer to the
PMUL of each set of indexes and their corresponding points
as window MSM, symbolized as Rj .

Fig. 2: The process of the Pippenger Algorithm. In this case,
the window size c is set to 4. The algorithm utilizes Sj,k

to represent the bucket’s number, where different window
MSMs have different j for their buckets. However, for the
sake of simplicity in the illustration, we use Sk to represent
the buckets. Different window MSMs reuse the same set of
buckets.

The Pippenger Algorithm can be divided into three steps:
Bucket Classification, Bucket Aggregation, and Window Ag-
gregation. In the Bucket Classification step, the points are as-
signed to their corresponding buckets based on the correspon-
dence between index ai,j and bucket number k. As a result, we

obtain Sk, the set of points in each bucket. This step involves
a total of m · (N − 2c) PADD operations, as shown in (1)
of Fig. 2. In the Bucket Aggregation step, the points from 2c

buckets are aggregated to obtain the results of window MSM.
This step requires approximately m · 2c PADD operations,
corresponding to (2) in Fig. 2. In the Window Aggregation
step, the results of m window MSMs are aggregated to obtain
MSM (⃗a,G). This step consumes m − 1 PADD operations
and c · (m − 1) PDBL operations, as shown in (3) of Fig. 2.
Bucket Classification is closely correlated with the degree. The
computational complexity of the Bucket Aggregation step and
Window Aggregation step is solely determined by the window
size and the scalar width, which is much lower than that of the
Bucket Classification step. For instance, when the degree of
MSM is 220 and the window size is 12, the PADD operations
of the Bucket Classification step account for 99.8% of the total
PADD operations. Several works have optimized the Bucket
Classification step by developing dedicated circuits, while the
processing of other steps is carried out on the host [11], [18],
[19].

C. zkSNARK

We present the basic workflow of zkSNARK, which mainly
comprises three major stages: Setup, Prove, and Verify. The
prover needs to convince the verifier that, for a given program
F and input x, the prover knows a witness w such that
F (x,w) = 0. In the Setup phase, the system generates many
random parameters, including the proving key and verification
key. The proof system also generates vector sets based on the
input, which are used in the proving phase. Each vector in the
vector sets consists of N large integers within a finite field
Fr, typically ranging from 256-bit to 768-bit in bit width.
The proving key comprises two sets of elliptic curve points.
During the proving process, the vectors are first processed
through NTT/INTT and polynomial operations to obtain H(x).
This is followed by applying INTT to get the coefficient
representation h⃗ of H(x), which constitutes the POLY step.
The second part is the MSM step, where h⃗ from POLY and a
vector s⃗ are combined with the proving key to perform MSM
operations. The degree of MSM is also N , and the results are
two points on the elliptic curve. These points form the proof Π.
In the verification phase, the verifier uses the verification key
and the input x to check if the proof generated by the prover
meets the requirements, thereby confirming whether the prover
truly knows the input x.

IV. MYOSOTIS

Myosotis is parameterized, allowing independent configura-
tion of the number of window MSMs and PADDs, as long as
the former exceeds the latter. The number of window MSMs
impacts the transmission bandwidth requirements, while the
number of PADD units affects performance. This flexibility
enables us to efficiently explore different hardware config-
urations to find the most optimal implementation. This is
particularly practical for future physical implementations, as
we always aim to strike a balance between resource overhead
and performance. Fig. 4 provides a comprehensive overview of

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3524364

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on January 23,2025 at 15:00:47 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

Fig. 3: The proof generation phase of zkSNARK. It mainly
consists of two steps: MSM and POLY, primarily involving
polynomial operations, NTT/INTT, and MSM.

the distinctions between our proposal and the previous design.
Overall, Myosotis has several advantages as follows:

• Points can be shared among different window MSMs,
maximizing their utilization and effectively reducing the
overall transmission bandwidth requirement.

• The sharing of points brings the added benefit of higher
utilization of PADD units.

• Our proposal offers greater flexibility in balancing area
and performance trade-offs while optimizing bandwidth
requirements, as it allows for the specification of the
number of window MSMs and PADD units.

Fig. 4: Comparison of previous design and our proposal.
Myosotis supports the flexibility of setting the number of
window MSMs and the number of PADD units to be processed
in parallel to improve bandwidth and performance, as long as
the former is greater than the latter. The previous design can
only be replicated as a whole multiple times or copied in a
time-sharing manner.

A. Overall Architecture

The overall architecture of Myosotis is depicted in Fig. 5,
which is primarily divided into four parts: Scheduler, Bucket
Array, FIFO Array, and PADD Array. The Scheduler is re-
sponsible for receiving incoming data from external sources
and intermediate data generated by the PADD Array. It
preprocesses the data, dispatches appropriate requests to the
Bucket Array and FIFO Array, and ensures timing alignment

for accessing the Bucket Array. The Bucket Array comprises
Bucket Banks and their corresponding Score Boards. Buckets
store intermediate results of the Bucket Classification step and
are dynamically updated based on the progress of computation.
These buckets are constructed using true dual-port SRAMs,
with their capacity dependent on the number of window MSMs
and the window size. The Score Board records the validity of
data in buckets using single-bit registers. Given that Buckets
Array is essentially a storage unit, we argue that the register-
based construction method, as adopted by PipeZK [12], incurs
higher power consumption compared to the SRAM-based
approach, even when using true dual-port SRAM for bucket
construction. Using our proposed baseline architecture, we
construct Bucket Arrays based on both SRAM and registers
and conduct a simple comparison. The results show that the
MSM accelerator with a true dual-port SRAM-based Bucket
Array achieves lower power consumption and higher energy
efficiency compared to the register-based design. The FIFO
Array functions as a buffer, consolidating data outputted by
the Bucket Array and forwarded by the Scheduler. We develop
an Arbiter responsible for managing the FIFO Array’s read
logic and data output scheduling. This ensures balanced data
retrieval and minimizes occurrences of external data collision.
The PADD Array features an integrated multi-PADD design,
providing the computational capacity of Myosotis. It retrieves
data from the FIFO Array for calculation and forwards the
results back to the Scheduler.

Fig. 5: Overall architecture of Myosotis. Specific quantities
are not depicted in the figure, as the exact configuration is
determined by specific parameters.

B. Single Window MSM and Single PADD

We refer to an accelerator that processes only one win-
dow MSM at a time and is equipped with only one PADD
unit as the baseline, which is the simplest abstraction in
our proposed design. Most of the previous custom circuit-
based MSM accelerators can be abstracted into the baseline
we propose. The data flow in our baseline also mirrors the
general paradigm of Myosotis, as shown in Fig. 6. Sec. IV-C
and Sec. IV-D will provide detailed insights into Myosotis’

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3524364

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on January 23,2025 at 15:00:47 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 6

Fig. 6: The data flow of our baseline, aligns with the funda-
mental paradigm of data flow within Myosotis.

capability for parallel computation of multiple window MSMs
and the design philosophy of integrated multi-PADD design.

In this simplest configuration of the accelerator, both the
indexes and the points within the window MSM enter the
Scheduler together. The Scheduler performs point extension
by calculating the corresponding T coordinate in runtime
based on the point’s X and Y coordinates, leading to reduced
bandwidth constraints. Then, the Scheduler checks the data,
such as identifying whether the index is zero or negative.
Subsequently, the Scheduler generates a request for the point
and sends both the request and the point to the Bucket Array.
The Bucket Array handles the received request, determining
the point’s processing based on the state queried from the
Score Board, updating data recorded in the Bucket Bank, or
pairing this point with the point in the Bucket Bank. Points
successfully paired in the Bucket Bank are sent to the FIFO
Array and pushed into the corresponding FIFO. The Arbiter in
the FIFO Array manages FIFO readouts to ensure a complete
and balanced distribution of data. The PADD unit within the
PADD Array handles the hardware implementation of point
addition algorithms. This is a fully pipelined PADD unit,
guaranteeing one point addition result output per cycle and
achieving extremely high throughput. The points and indexes
output from the PADD are reintroduced to the Scheduler along
with new indexes and points from external sources, repeating
the aforementioned data flow process.

The Scheduler operates with two data streams: one handles
points and indexes from external sources, while the other
manages data from the PADD. The Bucket Bank within the
Bucket Array needs to accommodate concurrent access to up
to two requests. To prevent potential data collision caused by
conflicts between two read/write requests, we implement this
structure using true dual-port SRAM. Additionally, the FIFO
Array includes multiple FIFOs to receive multiple point pairs
that may be generated within the same cycle.

We use extended projective coordinates to represent points
on Twisted Edwards elliptic curves. The PADD unit, built
on the point addition formula in [29], features 9 Barrett
modular multiplication [30] units in a fully pipelined structure
with a 77-clock cycle latency. During scalar division into
indexes, we preprocess it to map from unsigned represen-
tation ai to signed representation {ai,(m−1), · · · , ai,1, ai,0}.
Leveraging properties of points on the elliptic curve, the
mathematical transformation rule from P = (X,Y, Z, T) to
−P = (−X,Y, Z,−T), this preprocessing reduces the Bucket

Bank’s area cost by half.

C. Multiple Window MSMs via Data Sharing

In Myosotis, the number of window MSMs is parameter-
ized. When this number exceeds 1, multiple window MSMs
can be processed in parallel and out of order. As each iteration
can accommodate more indexes, the corresponding points are
shared among multiple window MSMs, thereby reducing the
frequency of point transmissions and allowing the data from
each transmission to be fully utilized within a longer time.
Each window MSM operates independently with points and
its own set of indexes, resulting in separate instruction flows,
Bucket Banks, and Score Boards. However, since input points
are the same, Myosotis can share the data flow among multiple
window MSMs, making this design hardware-friendly and
reducing some register logic. Fig. 7 illustrates the processing
flow using a simple case, Myosotis with two window MSMs
and one PADD unit, where 0 to 3 point pairs can be generated
per cycle. The Bucket Array processes requests from window
MSMs based on IndexA and IndexB, and PADD computation
results, simultaneously. Requests are generated independently
and processed in a pipelined fashion. Point pairs are pushed
into the FIFO Array when the requests arrive. These two
window MSMs share the computational capacity of Myosotis,
creating an impression of being processed in parallel.

Fig. 7: Myosotis with two window MSMs and one PADD
unit. IndexA and IndexB belong to the same scalar but under
different window MSMs, while IndexPADD denotes the index
returned by PADD.

The design principles also improve PADD utilization, as il-
lustrated in Fig. 8. Processing more window MSMs in parallel
raises the point pairing rate, thereby reducing pipeline bubbles
during PADD’s active time. We can conduct a simple analysis
in theory. Ideally, given that each point has a pairing success
probability of 1/2, the baseline appears to perfectly generate
one pairing point per clock cycle. However, it’s important to
note that at this point, the probability of successful pairing
is only theoretically equal to the efficiency of PADD’s read
operation. If points fail to pair, idle PADD will introduce
bubbles to the pipeline. In our case, theoretically, 1.5 pairing
points are obtained per cycle. The increased likelihood of

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3524364

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on January 23,2025 at 15:00:47 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 7

successful point pairing surpasses PADD’s read operation
efficiency, reducing pairing failures and enhancing PADD
utilization. However, due to pipeline startup and drain times,
PADD’s pipeline efficiency will only approach but not reach
100%. Fig. 9 shows statistics on pipeline bubbles for three
single-PADD cases, indicating that Myosotis enhances PADD
pipeline utilization.

During Bucket Aggregation and Window Aggregation steps,
multiple Bucket banks structure allows data from multiple win-
dow MSMs to be processed in a pipelined manner, enhancing
computational efficiency in these two steps.

Fig. 8: In Myosotis, the computational capacity of the PADD
unit is more effectively utilized compared to that in the
baseline due to higher pairing efficiency.

The Myosotis‘s bandwidth reduction results from efficiently
utilizing bucket capacity, which determines the maximum win-
dow size and the number of window MSMs processed in par-
allel. With the same cache size limit, Myosotis can effectively
utilize cache by reducing the capacity of individual Bucket
Banks and employing multiple Bucket Banks to accommodate
intermediate results of the Bucket Classification step for a
greater number of window MSMs. This may cause slight
performance loss, but it’s minor compared to the significant
bandwidth reduction. However, both approaches have similar
area overheads, implying a break in bandwidth bottleneck
allows more accelerators per chip. Such an approach also facil-
itates the expansion of computational units, thereby increasing
computational efficiency. Details are provided in Sec. IV-D.
For example, using the same SRAM capable of holding 8192
points, the performance loss of Myosotis with two window
MSMs and one PADD unit is approximately 5% compared to
the baseline while reducing bandwidth demand by 50%. By
enhancing PADD utilization, Myosotis alleviates performance
degradation from reduced single Bucket Bank capacity. Some-
times, we are open to accepting a minor increase in chip area,
by adding more Bucket Banks, in exchange for a significant
reduction in bandwidth.

D. Integrated Multi-PADD Design

Myosotis introduces a bandwidth optimization strategy in
Sec. IV-C. Building on this, Myosotis facilitates the utilization

Fig. 9: The number of pipeline bubbles in three typical
single-PADD cases with single window MSM (Baseline), two
window MSMs (2W1P), and three window MSMs (3W1P). A
lower value is preferable.

of multiple PADDs, as the computational performance is
now bounded by the computing capacity of PADD units.
In Sec. IV-C, we describe Myosotis’s bandwidth optimiza-
tion strategy, which is achieved through the allocation of
bucket capacity. This architecture, based on a multi-bank
bucket structure, significantly reduces the demand for interface
bandwidth with minimal performance loss. Additionally, it
supports handling more requests due to the increased number
of read/write ports. This enables our architecture to support
multiple PADD units, which generate more intermediate re-
sults and, consequently, more requests to Bucket Array. Since
a single Bucket Bank struggles to effectively handle multiple
requests generated by multiple PADD units, this overflow of
requests can significantly hamper performance.

Myosotis supports multiple PADD units, which can signifi-
cantly enhance MSM computational performance. Ideally, per-
formance should increase linearly with the number of PADD
units. However, without proper scheduling, request overflow in
a single Bucket Bank can occur, leading to underutilization of
PADD units. To address this, we propose an integrated multi-
PADD design. This design not only incorporates more PADD
units but also introduces specialized instruction and conflict-
free arbitration logic to manage read and write operations in
the FIFO Array. The workflow of the integrated multi-PADD
design is shown in Fig. 10. In Fig. 10 (a), the Bucket Array
and Scheduler provide the FIFO Array with points pairs, each
associated with an instruction. The instruction format, shown
in Fig. 10 (c), includes the FIFO index and the point pair’s
address in the Bucket Bank. This information ensures that
point pairs are written to the correct FIFO, with the subscript
of the FIFO Group indicating the source of the point pair.
The customized arbiter reads data from the FIFO Groups in
a balanced manner and sends it to the PADD Array, allowing
multiple PADD units to perform computations in parallel.
Fig. 10 (b) illustrates the arbitration logic of the customized ar-
biter. Since there will be more FIFOs than PADDs, the system
needs to accommodate a sufficient number of potential point

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3524364

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on January 23,2025 at 15:00:47 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 8

Fig. 10: (a) Integrated Multi-PADD Design. Each point pair corresponds to an instruction containing information about its
destination, aiding in the FIFO write logic. The arbiter uses conflict-free arbitration logic to determine the FIFO read order,
sending data to the PADD array for computation. Together, they form the integrated multi-PADD design. (b) Arbitration logic.
It selects the appropriate FIFO for reading based on the remaining available capacity to balance the data flow and reduce
congestion. (c) Instruction Format. The instruction includes a signal indicating whether the current computation point pair is
valid, the index of FIFO Group, the index of the window MSM to which the point belongs, and the index value indicating
the bucket address.

pairs. The arbiter balances FIFO capacity by selecting the
FIFO with the least remaining capacity, minimizing pipeline
stalls caused by the full status of FIFOs, which can impair
performance. The FIFO selection is not arbitrary, as multiple
FIFOs may qualify.

Incorrect arbitration logic can result in multiple PADD units
reading the same point pair within a window MSM per cycle,
leading to request overflow for the associated Bucket Bank
and causing performance bottlenecks. The customized arbiter
balances the remaining capacity of FIFOs in the FIFO Groups,
fully leveraging parallel computing capabilities. By adjusting
the number of PADD units and the corresponding FIFO units,
the design can be tailored to specific needs. This adjustment
also increases the number of point pair instructions, and the
arbiter’s arbitration logic is scalable to accommodate these
changes. Adding more PADD units increases computational
throughput with minimal additional area, enabling shared use
of components like the Scheduler, FIFO Array, and Bucket
Array, thus enhancing area efficiency and computational den-
sity.

Integrated Multi-PADD Design can enhance the computa-
tional performance and area efficiency of Myosotis, but they
may also undermine the bandwidth optimization effect due to
the overall increase in throughput. Myosotis supports flexible
configuration of the number of PADD units to explore the
optimal balance between performance, area, and bandwidth
requirements in practical applications. We advocate for a
principle in Myosotis: the number of window MSMs should
surpass the number of PADD units. When there are more
PADDs than window MSMs, the probability of successful
point pairing is lower than the computational efficiency of
PADDs, further reducing their utilization. Given that PADDs
are costly, it’s essential to maximize their utilization. For
instance, in a scenario with two window MSMs and three
PADD units, ideally, each cycle would produce (2+3) * 1/2

point pairs. However, since the PADD Array can read three
point pairs per cycle, it may introduce more bubbles into
the PADD pipeline. This imbalance, where there are more
PADD units than window MSMs, leads to a more noticeable
reduction in PADD utilization. This imbalance can also result
in an overflow of requests, where requests are generated at
a faster speed than they are consumed, limiting the overall
performance to the point pairing stage. Another key factor
is bandwidth: if there are more PADD units than window
MSMs, the bandwidth demand exceeds that of the baseline by
approximately Num.PADD−Num.win

Num.win
, ultimately constraining overall

performance due to bandwidth limitations.

V. RESULTS

In this section, we discuss the evaluation results of Myoso-
tis, a parameterized architecture developed in Verilog HDL.
The experimental setup, including various representative pa-
rameter combinations, is detailed in Tab. I, with all synthesized
accelerators operating at a frequency of 1 GHz. Our baseline
configuration aligns with most existing MSM accelerators
[11], [12], [18], [19], [21]. For Myosotis with more parameter
configurations, we select a typical range for the number of
window MSMs and PADD units. This range is consistent with
the scale of the latest and larger MSM accelerators [14], [20],
[31], making it a practical parameter choice. Additionally,
Myosotis under various parameter configurations can gener-
ally be abstracted into these selected typical cases. Although
Myosotis is highly scalable, we still do not recommend setting
an excessive number of window MSMs. Too many window
MSMs can lead to increased computation workload and larger
intermediate data storage, potentially degrading performance.
This can also present greater challenges for physical imple-
mentation. We use the BLS12-377 as the target curve because
it is commonly used in practical applications. However, the

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3524364

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on January 23,2025 at 15:00:47 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 9

proposed design is general and modular, making it adaptable
to other types of curves as well.

TABLE I: Experimental Configuration.

Platform TSMC 12nm process
Synthesis Tool Synopsys Design Compiler

Frequency 1 GHz
Target Curve BLS12-377

Benchmark

Baseline 1 window MSM 1 PADD

Myosotis

2 window MSM 1 PADD
3 window MSM 1 PADD
3 window MSM 2 PADD
4 window MSM 3 PADD

To the best of our knowledge, previous works can only be
abstracted into our proposed baseline. Therefore, we compare
the proposed baseline with previous works and also contrast
the baseline with other typical cases of Myosotis to explore
the trade-offs in area, latency, and bandwidth in our work.

The choice of Window Size: the scale of window size
affects two factors:

• Area Overhead of the Bucket.
• Computational Workload.

We believe that the area overhead of the Bucket Bank should
not be excessive, as the performance gains from increasing
the depth of a single Bucket Bank often diminish. From
the perspective of minimizing computational load, Work [14]
recommends a window size of 13, while work [18] suggests
a window size of 12. We also found that, when the window
size is 12 or 13, the area of the Bucket Bank and the area
of a PADD unit are balanced in the TSMC 12nm process,
contributing to optimal area efficiency. Therefore, we set the
window size to 13 in our proposed baseline.

A. Evaluation of Proposed Baseline

We compare our proposed baseline design in terms of both
the number of clock cycles and actual execution time. The
former is to ensure a fair comparison without considering
differences in operating frequency, while the latter aims to
provide a more intuitive illustration of the speedup of our
design relative to previous works.

In terms of the number of clock cycles, we compare
our proposed baseline with BSTSM and PipeZK, which are
representative works implemented on FPGA and ASIC, re-
spectively. Fig. 11 (a) uses an MSM with a degree of 220

as the benchmark, while Fig. 11 (b) uses an MSM with a
degree of 225 as the benchmark, though this data of PipeZK
is not available for the latter. The proposed baseline has a
clock cycle count similar to that of BSTMSM, and they remain
almost consistent as the MSM degree increases. However,
We observe the difference in their cache capacities, with
BSTMSM boasting a larger cache of 15MB, far surpassing
the proposed baseline’s limited 768KB. We believe this is
because BSTMSM stores a large amount of intermediate data
on-chip. In contrast, we choose to perform reduction com-
putations on intermediate data as soon as possible to reduce
storage overhead and improve area efficiency. As a result,
our speed remains almost at the same level as BSTMSM.
Notably, a 15MB true dual-port SRAM on the TSMC 12nm

Fig. 11: (a) Comparison of Clock Cycle Counts Between Our
Proposed Baseline and State-of-the-Art FPGA and ASIC De-
signs Using an MSM with a Degree of 220 as the Benchmark.
(b). Comparison of Clock Cycle Counts Between Our Pro-
posed Baseline and State-of-the-Art FPGA Design Using an
MSM with a Degree of 225 as the Benchmark. (c) Comparison
of latency with the latest designs in ZPrize 2023, benchmarked
with batch-4 MSM with degree 224. It’s important to note
that these two works deploy three EC Adders (equivalent to
the PADD unit in our design) on-chip, whereas our proposed
baseline only includes a single PADD unit.

process occupies tens of square millimeters, far exceeding the
area of our entire accelerator. Considering overall computa-
tion density, we believe the proposed baseline demonstrates
superior comprehensive performance. Compared to PipeZK,
despite PipeZK having two PADD units which theoretically
should provide greater computational power, its scheduling
mechanism is not smart enough and its choice of window
size is overly conservative. As a result, its performance is
significantly lower than our proposed baseline.

In terms of the actual implementation time, Tab. II presents
a comparison between our proposed baseline and previous
works. The comparison is conducted with FPGA-based works
that have a window size comparable to ours. When it comes
to ASIC-based designs, PipeZK represents the state-of-the-art
implementation at now. It can be observed that the proposed
baseline achieves up to a 3.32 × speedup relative to the
best FPGA-based design, BSTMSM. Compared to PipeZK,
our proposed baseline achieves a speedup of up to 6.72 ×.
However, comparing designs with different frequencies is not
straightforward.

As the degree of MSM increases, the speedup tends to
rise. This trend occurs because when the MSM degree is
small, the time consumed by the Bucket Aggregation step
and Window Aggregation step is relatively high, especially
when the gap between the MSM degree and the window
size is small. However, the proportion of time spent on these
two steps decreases as the degree of MSM increases, as
they are independent of the MSM degree and only depend
on the window size. One feasible mitigation strategy is to
increase the ‘N’ per turn to reduce the number of turns
and enhance computational performance for smaller MSM
degrees. While Elastic MSM [23] offers a solution by using
the precomputation technique to fold the turns and increase the
‘N’ per turn, it also significantly increases storage overhead.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3524364

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on January 23,2025 at 15:00:47 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 10

TABLE II: Comparison of Proposed Baseline with Typical FPGA/ASIC Implementations.

Design BSTMSM [21] PipeMSM [18] HardCaml [19] PipeZKa [12] Baselineb

Platform Xilinx U250 Xilinx U55C Xilinx VU9P UMC 28nm TSMC 12nm
Curve BLS12-377 BLS12-377 BLS12-377 BLS12-381 BLS12-377

Frequency 300 MHz 125 MHz 278 MHz 300 MHz 1 GHz
Window Size 13 12 13 4 13

Bucket Capacity 15 MB 576 KB 14.7 MB 1.4 KB 768 KB

Area
411k LUTs / 744k REGs/
2920 DSPs / 623 SRAMs

-
387k LUTs / 733k REGs

2999 DSPs / 883.5 SRAMs
33.72 mm2 5.36 mm2

Time (ms)

218 23 68.8 - 46 11.7 (1.97 × / 3.93 ×)
219 40 136.6 499 92 16.9 (2.37 × / 5.44 ×)
220 75 273 540 184 27.4 (2.74 × / 6.72 ×)
221 145 - 620 - 48.4 (3.00 × / -)
222 285 - 780 - 90.3 (3.16 × / -)
223 564 - 1094 - 174.2 (3.24 × / -)
224 1124 - - - 342.0 (3.29 × / -)
225 2242 - - - 677.6 (3.31 × / -)
226 4479 - - - 1348.7 (3.32 × / -)

a PipeZK is equipped with two PADD units on-chip, but only performs the bucket classification step on the chip, with the remaining steps executed
on the host.

b The data in parentheses show speedup relative to other works, with the left value compared to BSTMSM and the right to PipeZK.

Myosotis addresses this by processing multiple window MSMs
in parallel, increasing the ‘N’ per turn.

Comparasion with ZPrize 2023: We also compare our
proposed baseline with two recently released FPGA-based
designs in ZPrize 2023 [32], SuperScalar [20] and Yrrid [31]
in Fig. 11 (c). It can be observed that our proposed baseline
also demonstrates a speed advantage over these designs. It
is worth noting that this is just the baseline design of our
proposed architecture, Myosotis. In our view, achieving such
performance already positions it as a representative of main-
stream MSM accelerators, even surpassing them. In Sec. V-B,
we will further explore Myosotis’s performance to illustrate
the superiority of our proposed architecture.

Comparison on other curves with existing works: In
addition to evaluating MSM on the 377-bit BLS12-377 curve,
we also compare the performance of our proposed baseline
on other elliptic curves with different bit-widths, including
BN128 and MNT4753. The detailed comparison data is shown
in Tab. III, where the speedup of our baseline relative to other
works is provided in parentheses. For the BN128 curve, it
is important to note that MSMAC is an FPGA-based MSM
accelerator for the BN128 curve, equipped with 4 PADD units.
PipeZK also uses 4 PADD units. In contrast, our baseline only
utilizes a single PADD unit. Our baseline achieves speedup of
up to 1.38 × and 2.47 × relative to these two works. As
the degree of MSM increases, the performance advantage of
our baseline relative to MSMAC diminishes. We believe this
is due to MSMAC’s instruction-driven batch processing of
MSM computations and the advantages offered by its powerful
on-chip NoC. We recognize that our baseline lacks specific
optimizations for the BN128 curve. For the MNT4753 curve,
PipeZK is equipped with only 1 PADD unit, as the data width
is 753 bits, which is quite large. cuZK is an MSM accelerator
based on the Nvidia V100. Our baseline achieves speedup of
up to 7.59 × and 12.01 × relative to these two works. Despite
the variations in the number of PADD cores and operating
frequencies among the compared works, after normalization,
our baseline still leads across all comparisons in Tab. III.

This further highlights the performance of the baseline we
proposed.

TABLE III: Comparison of Our Proposed Baseline with Other
Works on Different Elliptic Curves.

Curve BN128a MNT4753
Work MSMAC [14] PipeZK [12] Baseline PipeZK [12] cuZK [7] Baseline

Window Size 13 4 13 4 16 13
Platform Xilinx VP1502 UMC 28nm TSMC 12nm UMC 28nm Nvidia V00 TSMC 12nm

Frequency 250 MHz 300 MHz 1 GHz 300 MHz - 1 GHz

218
10.65

(1.20 ×)
16

(1.80 ×)
8.9

184
(3.96 ×)

- 46.5

219
19.45

(1.37 ×)
32

(2.25 ×)
14.2

369
(5.83 ×)

732
(11.7 ×)

63.3

220
34.15

(1.38 ×)
61

(2.47 ×)
24.7

735
(7.59 ×)

1163
(12.01 ×)

96.8

221
58.87

(1.29 ×)
- 45.6 -

1960
(11.91 ×)

164.5

Time (ms) 222
114.48

(1/31 ×)
- 87.4 -

3608
(11.97 ×)

301.3

223
200.65

(1.17 ×)
- 171.5 -

6635
(11.47 ×)

578.7

224
373.77

(1.10 ×)
- 339.3 - - 1141.3

225
736.68

(1.09 ×)
- 674.9 - - 2282.8

226
1420

(1.05 ×)
- 1346 - - 4598.9

a. Both MSMAC and PipeZK utilize four PADD units.

B. Evaluation of Myosotis

To assess the comprehensive performance of Myosotis,
including area, bandwidth, and latency, we construct four
Myosotis cases based on the parameter configurations listed in
Tab. I. The window size of the proposed baseline is 13, which
is an optimal choice for balancing bucket area overhead and
computational load. With this constraint, for the four cases of
Myosotis, we set their window sizes to 12 and 11, respectively,
aiming to keep the Bucket Array area of all compared cases
as equal as possible or with no significant differences. We
analyze the latency, area overhead, and bandwidth in detail
in Fig. 12. Additionally, the Area-Latency Product (ALP), as
shown in Eq. 6, is introduced to evaluate the cases of Myosotis,
where a smaller ALP corresponds to better area efficiency or
computation density. Average bandwidth can reflect whether
the circuit is bandwidth-constrained.

ALP = Area × Latency. (6)

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3524364

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on January 23,2025 at 15:00:47 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 11

Fig. 12: Comparison of bandwidth, latency, area, and nor-
malized ALP for different scenarios with similar Bucket
capacities, where latency, area, and ALP are normalized to
show relative values. ‘X’W‘Y’P represents ‘X’ window MSMs
processed in parallel and ‘Y’ PADD units. The ‘ws’ represents
the window size for each case. Bandwidth and latency are
averaged over MSM degrees ranging from 218 to 226.

For convenience, we use ‘X’W‘Y’P to represent a case
with ‘X’ window MSMs processed in parallel and ‘Y’ PADD
units in Myosotis. As a parameterized architecture, Myosotis
follows the principle that ‘X’ is greater than ‘Y’. So the pri-
mary contribution lies in reducing the architecture’s bandwidth
requirements. For instance, the performance and area of the
2W1P model are nearly identical to those of the baseline.
However, the normalized ALP increases by 9%, while saving
43% of the bandwidth requirement. The performance of the
3W1P case is diminished by 13%, yet the reduction in overall
area is made possible by a 25% reduction in bucket storage
overhead. The normalized ALP is reduced by 6%, a relatively
minor change, yet the bandwidth is significantly reduced by
58%. It is important to note that the experimental results may
not align perfectly with our ideal outcomes. This discrepancy
arises because the scalar length serves as a constraint and is
not always an integer multiple of the window size, resulting
in wasted computational resources during the final turn of
the Bucket Classification step. We mitigate this inadequacy
by selecting a suitable window size and ensuring backward
compatibility within Myosotis.

Myosotis not only facilitates the parallel processing of mul-
tiple window MSMs but also enables the utilization of multiple
PADD units to augment the computational capacity, with these
supplementary PADD units able to share the majority of the
original logic resources. The inclusion of integrated multi-
PADD design and conflict-free arbitration logic substantially
enhances the circuit’s computational capabilities. The combi-
nation of these two factors results in higher area efficiency
or computational density for the Myosotis. Compared to the
3W1P case, the 3W2P case shows a 50% decrease in latency
and an overall 34% reduction in ALP.

In terms of bandwidth, when the number of window MSMs

exceeds the number of PADD units, there is an improvement
in average transmission bandwidth requirements. The increase
in PADD units makes this improvement worse because lower
latency means higher throughput. Taking the case 4W3P as an
example, it has a significant 41% reduction in ALP, but only a
7% drop in transmission bandwidth requirements. We also do
not recommend the parameter choice in Myosotis where the
number of window MSMs equals the number of PADD units,
because this choice is essentially consistent with the baseline
we propose.

In contrast to previous work, which devoted a significant
amount of resources to continually increasing Single Bucket
Bank capacity to achieve marginal performance improvements,
Myosotis represents a more optimal choice. This is because
it strikes a balance between the increase in PADD units and
the increase in caches, resulting in a notable improvement in
area efficiency while also reducing bandwidth. We believe that
simply increasing Bucket capacity shifts the workload to the
Bucket Aggregation step and Window Aggregation step, as
they need to handle more intermediate results from the Bucket
Classification step.

Comparison when the overall area is approximately
equal: Previously, we compare the metrics based on nearly
equal bucket overhead. We are also curious about the per-
formance differences in Myosotis cases with nearly iden-
tical overall areas but different configurations, particularly
regarding the ALP metric, which indicates area efficiency.
Furthermore, we compare three of these cases, where the total
area of the MSM accelerator serves as a rough constraint,
as shown in Tab. IV. The window sizes for the three cases
vary, which is understandable because we aim to ensure
their areas are roughly similar. Compared with our proposed
baseline, in the 2W1P case, the ALP slightly increases, but the
demand for interface bandwidth decreases by approximately
43%. The 3W2P case demonstrates a 38% improvement in
area efficiency, coupled with a 17% decrease in bandwidth.
This demonstrates that our proposed Myosotis can indeed
explore and generate more computationally efficient MSM ac-
celerators, which holds significant importance for the practical
application of MSM accelerators.

TABLE IV: Comparison of the baseline and 2 cases in
Myosotis with approximately equal area in Myosotis.

Case1 Baseline 2W1P 3W2P
Window Size 13 12 11
Bandwidthb

(GB/s)
76.4

(1.00 ×)
43.6

(0.57 ×)
63.5

(0.83 ×)
Area

(mm2)
5.36

(1.00 ×)
5.38

(≈ 1.00 ×)
5.83

(1.09 ×)
Latencyb

(ms)
304

(1.00×)
329

(1.08 ×)
172

(0.57 ×)
Normalized

ALP 100% 109% 62%

a ‘X’W‘Y’P represents ‘X’ window MSMs and ‘Y’
PADD units.

b Bandwidth and latency are averaged over MSM de-
grees ranging from 218 to 226.

Observation of the relationship between throughput and
operation intensity for different parameters: Furthermore,
Myosotis is a parameterized design. We want to analyze the

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3524364

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on January 23,2025 at 15:00:47 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 12

Fig. 13: Roofline Model of The Number of MSM Operation Points (i.e., Operational Intensity) and Myosotis’s Throughput.
We evaluate parameters including the number of windows, the number of PADD units, and window size. It is evident that
the number of PADD units and window size have a significant impact on throughput. Throughput tends to stabilize as the
degree of MSM increases, while the number of windows has a relatively minor effect on throughput. The number of windows
primarily affects transmission bandwidth.

impact of each parameter on performance. Using a roofline
model, we establish the relationship between throughput and
operation intensity across different configurations, shown in
Fig. 13, where operation intensity is measured by the number
of points. We focused on three primary parameters: window
size, the number of window MSMs, and the number of PADD
units.

The roofline model shows that Myosotis’s throughput rises
with increasing operation intensity before stabilizing, as higher
intensity maximizes pipeline utilization while minimizing the
time ratios for bucket aggregation and window aggregation
steps, reducing their impact on throughput. Window size and
PADD unit quantity most directly affect throughput among
the parameters. In Fig. 13, we divide the roofline model into
three subfigures—(a), (b), and (c)—each corresponding to the
number of PADD units of 3, 2, and 1, respectively. More
PADD units lead to increased throughput, which aligns with
our expectations. Within each subfigure, throughput generally
rises with window size, as larger window sizes yield higher
aggregation efficiency and fewer bucket classification turns,
leading reduction in computational latency. This also implies
a larger on-chip storage area, and the increase in area is
exponential. However, the performance gain from this increase
may be marginal. Therefore, when making comparisons, we
also balance the number of window MSMs and the window
size to align with practical feasibility. An exception is seen
in Fig. 13 (b), where the case with ws=11&2W2P has 12
computation turns, while the case with ws=12&2W2P has only
11 turns, causing a noticeable throughput drop in the former.
We attribute this to the scalar width limit of 253. Lastly,
the number of window MSMs minimally impacts throughput,
confirming earlier analyses that it primarily affects PADD unit
utilization and Myosotis’s transmission bandwidth.

VI. CONCLUSION

This paper introduces Myosotis, an efficiently pipelined
parameterized architecture for Multi-Scalar Multiplication.
Following principles of parameterization, Myosotis enhances
performance by leveraging data sharing, optimizing cache
usage, and integrating multi-PADD design compared to previ-
ous designs. We assess the area, latency, and their combina-
tion—ALP, indicating area efficiency, as well as the bandwidth
of our proposed baseline and Myosotis with typical parameter
selections. We suggest adjusting the parameters of Myosotis
according to the specific requirements of the application,
achieving a balance among these metrics to obtain the desired
accelerator.

REFERENCES

[1] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity
of interactive proof-systems,” in Providing sound foundations for cryp-
tography: On the work of shafi goldwasser and silvio micali, 2019, pp.
203–225.

[2] R. Singh, A. D. Dwivedi, G. Srivastava, P. Chatterjee, and J. C.-W.
Lin, “A privacy-preserving internet of things smart healthcare financial
system,” IEEE Internet of Things Journal, vol. 10, no. 21, pp. 18 452–
18 460, 2023.

[3] H. Sun, T. Bai, J. Li, and H. Zhang, “zkdl: Efficient zero-knowledge
proofs of deep learning training,” Cryptology ePrint Archive, Paper
2023/1174, 2023. [Online]. Available: https://eprint.iacr.org/2023/1174

[4] B.-J. Chen, S. Waiwitlikhit, I. Stoica, and D. Kang, “Zkml: An optimiz-
ing system for ml inference in zero-knowledge proofs,” 04 2024, pp.
560–574.

[5] H. Jin and J. Xiao, “Towards trustworthy blockchain systems in the
era of “internet of value”: development, challenges, and future trends,”
Science China Information Sciences, vol. 65, pp. 1–11, 2022.

[6] J. Groth, “On the size of pairing-based non-interactive arguments,” in
Advances in Cryptology – EUROCRYPT 2016, M. Fischlin and J.-S.
Coron, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp.
305–326.

[7] T. Lu, C. Wei, R. Yu, C. Chen, W. Fang, L. Wang, Z. Wang, and
W. Chen, “cuzk: Accelerating zero-knowledge proof with a faster par-
allel multi-scalar multiplication algorithm on gpus,” IACR Transactions
on Cryptographic Hardware and Embedded Systems, vol. 2023, no. 3,
pp. 194–220, 2023.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3524364

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on January 23,2025 at 15:00:47 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 13

[8] N. Pippenger, “On the evaluation of powers and related problems,”
in 17th Annual Symposium on Foundations of Computer Science (sfcs
1976). IEEE Computer Society, 1976, pp. 258–263.

[9] Wikipedia contributors, “Elliptic curve point multiplication,”
2024, [Online; accessed 1-May-2024]. [Online]. Available:
https://en.wikipedia.org/wiki/Elliptic curve point multiplication

[10] C. Wang and M. Gao, “Sam: A scalable accelerator for number theoretic
transform using multi-dimensional decomposition,” in 2023 IEEE/ACM
International Conference on Computer Aided Design (ICCAD), 2023,
pp. 1–9.

[11] K. Aasaraai, D. Beaver, E. Cesena, R. Maganti, N. Stalder, and J. Varela,
“Fpga acceleration of multi-scalar multiplication: Cyclonemsm,” Cryp-
tology ePrint Archive, 2022.

[12] Y. Zhang, S. Wang, X. Zhang, J. Dong, X. Mao, F. Long, C. Wang,
D. Zhou, M. Gao, and G. Sun, “Pipezk: Accelerating zero-knowledge
proof with a pipelined architecture,” in 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA). IEEE,
2021, pp. 416–428.

[13] C. Liu, H. Zhou, L. Yang, J. Xu, P. Dai, and F. Yang,
“Gypsophila: A scalable and bandwidth-optimized multi-scalar
multiplication architecture,” ser. DAC ’24. New York, NY, USA:
Association for Computing Machinery, 2024. [Online]. Available:
https://doi.org/10.1145/3649329.3658259

[14] P. Qiu, G. Wu, T. Chu, C. Wei, R. Luo, Y. Yan, and H. Zhang, “Msmac:
Accelerating multi-scalar multiplication for zero-knowledge proof,” in
2024 61st ACM/IEEE Design Automation Conference (DAC), 2024.

[15] H. Zhou, C. Liu, L. Yang, L. Shang, and F. Yang, “Rezk: A highly re-
configurable accelerator for zero-knowledge proof,” IEEE Transactions
on Circuits and Systems I: Regular Papers, pp. 1–14, 2024.

[16] C. Liu, H. Zhou, P. Dai, L. Shang, and F. Yang, “Priormsm: An
efficient acceleration architecture for multi-scalar multiplication,” ACM
Trans. Des. Autom. Electron. Syst., jul 2024, just Accepted. [Online].
Available: https://doi.org/10.1145/3678006

[17] Y. Xu and D. Qian, “Zodiacmsm: A heterogeneous, multi-node and
scalable multi-scalar multiplication system for zero knowledge proof
acceleration,” in 2023 IEEE 36th International System-on-Chip Confer-
ence (SOCC), 2023, pp. 1–6.

[18] C. F. Xavier, “Pipemsm: Hardware acceleration for multi-scalar multi-
plication,” Cryptology ePrint Archive, 2022.

[19] A. Ray, B. Devlin, F. Y. Quah, and R. Yesantharao, “Hardcaml msm:
A high-performance split cpu-fpga multi-scalar multiplication engine,”
in Proceedings of the 2024 ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, ser. FPGA ’24. New York, NY,
USA: Association for Computing Machinery, 2024, p. 33–39. [Online].
Available: https://doi.org/10.1145/3626202.3637577

[20] C. Lab, “SuperScalar,” https://github.com/z-prize/2023-entries/
tree/main/prize-1-fpga-gpu-proof/prize-1a-msm/fpga/SuperScalar,
accessed:2024-7-3.

[21] B. Zhao, W. Huang, T. Li, and Y. Huang, “Bstmsm: A high-performance
fpga-based multi-scalar multiplication hardware accelerator,” in 2023
International Conference on Field Programmable Technology (ICFPT),
2023, pp. 35–43.

[22] W. Ma, Q. Xiong, X. Shi, X. Ma, H. Jin, H. Kuang, M. Gao, Y. Zhang,
H. Shen, and W. Hu, “Gzkp: A gpu accelerated zero-knowledge proof
system,” in Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 2, 2023, pp. 340–353.

[23] X. Zhu, H. He, Z. Yang, Y. Deng, L. Zhao, and R. Hou, “Elastic msm:
A fast, elastic and modular preprocessing technique for multi-scalar
multiplication algorithm on gpus,” Cryptology ePrint Archive, Paper
2024/057, 2024. [Online]. Available: https://eprint.iacr.org/2024/057

[24] C. Costello and B. Smith, “Montgomery curves and their arithmetic:
The case of large characteristic fields,” Cryptology ePrint Archive, Paper
2017/212, 2017. [Online]. Available: https://eprint.iacr.org/2017/212

[25] D. J. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters, “Twisted
edwards curves,” in Progress in Cryptology–AFRICACRYPT 2008: First
International Conference on Cryptology in Africa, Casablanca, Mo-
rocco, June 11-14, 2008. Proceedings 1. Springer, 2008, pp. 389–405.

[26] C. Costello and B. Smith, “Montgomery curves and their arithmetic:
The case of large characteristic fields,” Journal of Cryptographic Engi-
neering, vol. 8, no. 3, pp. 227–240, 2018.

[27] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-
speed high-security signatures,” Journal of cryptographic engineering,
vol. 2, no. 2, pp. 77–89, 2012.

[28] W. Haddaji, L. Ghammam, N. E. Mrabet, and L. B. Abdelghani, “On
computing the multidimensional scalar multiplication on elliptic curves,”

Cryptology ePrint Archive, Paper 2024/038, 2024, https://eprint.iacr.
org/2024/038. [Online]. Available: https://eprint.iacr.org/2024/038

[29] H. Hisil, K. K.-H. Wong, G. Carter, and E. Dawson, “Twisted edwards
curves revisited,” Cryptology ePrint Archive, Paper 2008/522, 2008.
[Online]. Available: https://eprint.iacr.org/2008/522

[30] P. Barrett, “Implementing the rivest shamir and adleman public key
encryption algorithm on a standard digital signal processor,” in Ad-
vances in Cryptology - CRYPTO ’86, Santa Barbara, California, USA,
1986, Proceedings, ser. Lecture Notes in Computer Science, vol. 263.
Springer, 1986, pp. 311–323.

[31] Y. Software, “Yrrid,” https://github.com/z-prize/2023-entries/tree/main/
prize-1-fpga-gpu-proof/prize-1a-msm/fpga/Yrrid, accessed:2024-7-7.

[32] Zprize, “ZPRIZE: ACCELERATING THE FUTURE OF ZERO
KNOWLEDGE CRYPTOGRAPHY,” https://www.zprize.io/,
accessed:2024-7-8.

Changxu Liu received the B.S. degree in Microelec-
tronics Science and Engineering from Wuhan Uni-
versity, Wuhan, China, in 2022. He is currently pur-
suing the Ph.D. degree with the State Key Labora-
tory of Integrated Chips and Systems, School of Mi-
croelectronics, Fudan University, Shanghai, China.
His current research interests include hardware-
software Co-design for privacy-preserving comput-
ing applications and digital IC design.

Hao Zhou received the B.S. degree in Electronic
Science and Technology from Jilin University, Jilin,
China, in 2017 and the M.S. degree in Electronics
and Communication Engineering from University of
Chinese Academy of Sciences, Beijing, China, in
2020. He is currently working toward the Ph.D. de-
gree in Electronic and Information Engineering with
the School of Microelectronics, Fudan University,
Shanghai, China. His research interests include zero-
knowledge proof, fully homomorphism encryption
and VLSI implementation of digital systems.

Lan Yang received the B.S. degree in Microelec-
tronic Science and Engineering from Fudan Uni-
versity, Shanghai, China, in 2023. She is currently
pursuing the Ph.D. degree with the State Key Lab-
oratory of Integrated Chips and Systems, School
of Microelectronics, Fudan University, Shanghai,
China. Her research interests include homomorphic
encryption in privacy-preserving technologies and
hardware acceleration.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3524364

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on January 23,2025 at 15:00:47 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 14

Zheng Wu received the B.E. degree in Inte-
grated Circuit Design and Integrated System from
Huazhong University of Science and Technology,
Wuhan, Hubei, China, in 2020. He is currently
pursuing the Ph.D. degree with State Key Lab of
Integrated Chips & System, Microelectronics De-
partment, Fudan University, Shanghai, China. His
current research interests include processor architec-
ture design space exploration and automated deep
learning compilation.

Patrick Dai is the founder of Semisand Chip Design Pte Ltd Singapore.
Semichip team focus on ZKP algorithm research and engineering, and have
already launched a variety of algorithm optimizing and accelerating solutions
for ASIC, FPGA, GPU etc.

Yinlong Li is the senior FPGA engineer in hardware
R&D center of Shanghai Academy of Future Inter-
net Technology. His main research interests include
FPGA-based hardware acceleration of cryptographic
algorithms, blockchain and privacy computing, and
zeroknowledge proof.

Shiyong Wu is the chief researcher in hardware
R&D center of Shanghai Academy of Future Inter-
net Technology. His main research interests include
hardware acceleration of cryptographic algorithms,
blockchain and privacy computing, hardware secu-
rity, heterogeneous computing.

Fan Yang (Member, IEEE) received the B.S. degree
from Xi’an Jiaotong University, Xi’an, China, in
2003, and the Ph.D. degree from Fudan University,
Shanghai, China, in 2008. He is currently a Full
Professor with the Microelectronics Department, Fu-
dan University. His research interests include model
order reduction, circuit simulation, high-level syn-
thesis, acceleration of artificial neural networks,
acceleration of privacy-preserving computing, and
yield analysis and design for manufacturability.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3524364

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on January 23,2025 at 15:00:47 UTC from IEEE Xplore. Restrictions apply.

