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ABSTRACT
In privacy-preserving applications like Post-Quantum Cryptogra-
phy (PQC) and Fully Homomorphic Encryption (FHE), polynomial
multiplication is common, and the Number Theoretic Transform
(NTT) is a key algorithm for reducing its complexity. In this pa-
per, we present HMNTT, a highly efficient MDC-NTT architecture.
Utilizing the four-step NTT algorithm and a pipelined transpose
module, HMNTT offers a highly efficient and scalable architecture
for handling NTT with large degrees. We optimize the processing
element (PE) to alleviate backpressure and data conflicts in data
flow. Leveraging FPGA characteristics, we construct a modular mul-
tiplication module to reduce resource usage and improve operating
frequency. Evaluation results indicate that HMNTT achieves an av-
erage of 2.34× and 1.26× reduction in Area-Time Product compared
to the latest pipelined NTT architectures.
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1 INTRODUCTION
The Number Theoretic Transform (NTT) is an efficient optimiza-
tion algorithm for polynomial multiplication, a variant of the Fast
Fourier Transform (FFT). NTT is widely employed in privacy-
preserving applications. For instance, polynomial multiplications
account for a significant portion of the computation time in Kyber
[3], a representative Post-Quantum Cryptography (PQC) algorithm.
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In Fully Homomorphic Encryption (FHE) [5], data must be trans-
formed between the limb-wise representation and the coefficient-
wise representation for various computation operations, necessitat-
ing the use of NTT and inverse NTT (INTT).

Implementing NTT on commonly used processors such as CPUs
and GPUs is a widely adopted approach. However, due to the in-
herent characteristics of these hardware platforms, it becomes chal-
lenging to balance performance and overhead. Much effort has been
dedicated to developing custom hardware-accelerated NTT imple-
mentations. For instance, HEAX [17] leverages multiple processing
elements (PEs) to perform the NTT using a parallel computing
approach. While such a parallel computing design indeed delivers
high performance, it comes with the trade-off of increased hard-
ware overhead and a more intricate circuit layout. Mert 𝑒𝑡 𝑎𝑙 .’s
work [14] offers a parameterized tool for specifying the number
of PEs and generating the corresponding NTT accelerator. How-
ever, as the number of PEs and the polynomial degree increase,
the corresponding bandwidth and control logic demands become
more intricate. Furthermore, many works focus on optimizing the
data access patterns of NTT, which further complicates the issue.
Meanwhile, the physical implementation of this style of NTT is
challenging.

The NTT based on Single-path Delay Feedback (SDF) [6, 20]
and Multi-path Delay Commutator (MDC) [6, 19] exhibits excel-
lent pipeline characteristics. In addition, it is a bandwidth-efficient
circuit structure, devoid of overly complex control logic. While
SDF-NTT or MDC-NTT offers advantages, backpressure from later
PEs to earlier ones can introduce many pipeline bubbles, leading to
larger latency—especially evident in SDF-NTT.

We propose a highly efficient MDC-NTT architecture, HMNTT,
intended for deployment in FPGA for privacy-preserving applica-
tions. HMNTT is designed for practical use, specifically for han-
dling high-degree polynomials. This capability is increasingly in
demand due to the growing use of applications focused on privacy-
preserving. By employing the four-stepNTT algorithm and a pipelined
transpose module, we construct a scalable NTT architecture, avoid-
ing the need for deep FIFO/MEMmodules and effectively mitigating
area consumption. We optimize the PE design for the MDC-NTT,
mitigating data collisions and backpressure between each stage.
Regarding the design of the modular multiplication module, a crit-
ical component of the PE in HMNTT, we carefully consider its
adaptability to FPGA and the structure of DSP resources (refer to
AMD-Xilinx’s FPGA platform). This strategy minimizes resource
consumption, enabling our design to operate at a higher frequency.
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2 PRELIMINARY
NTT is defined over the polynomial ring Z𝑞 [𝑥]/𝜙 (𝑥), where Z𝑞 [𝑥]
represents the ring of integers modulo 𝑞, and 𝜙 (𝑥) represents the
polynomial modulus. The NTT can convert polynomials in the
coefficient domain to the NTT (evaluation) domain. Taking a simple
example: NTT can convert two polynomials 𝑎(𝑥) = ∑𝑛−1

𝑖=0 𝑎𝑖𝑥𝑖 and
𝑏 (𝑥) = ∑𝑛−1

𝑖=0 𝑏𝑖𝑥𝑖 from the coefficient domain into 𝐴(𝑥) and 𝐵(𝑥)
within the NTT domain. After point-wise multiplication of 𝐴(𝑥)
and 𝐵(𝑥), we obtain 𝐶 (𝑥). The result of 𝐶 (𝑥) undergoes the INTT,
resulting in 𝑐 (𝑥), which represents the polynomial multiplication
result of 𝑎(𝑥) and 𝑏 (𝑥). The algorithmic complexities of NTT/INTT
are both 𝑂 (𝑛𝑙𝑜𝑔𝑛), while the algorithmic complexity of point-wise
multiplication is 𝑂 (𝑛). Compared to the schoolbook polynomial
multiplication complexity of 𝑂 (𝑛2), the utilization of NTT and
INTT enhances the efficiency of polynomial multiplication.

𝐴𝑖 can be obtained using the following formula:

𝐴𝑖 =

𝑛−1∑︁
𝑗=0

𝑎 𝑗𝑔
𝑗
𝑖
𝑚𝑜𝑑 𝑞. (1)

When𝑔𝑖 is one of𝑛-th primitive roots of modulo𝑞, satisfying𝑔𝑛
𝑖
≡ 1.

By exploiting the properties of modular arithmetic and primitive
roots, we can unfold the NTT into a butterfly structure, enabling
parallel computation. The degree of the NTT is typically padded to
a power of 2. Fig. 1 depicts a butterfly structure of 8-pt NTT. There
are two commonly used butterfly unit structures: Gentleman-Sande
(GS) type and Cooley-Tukey (CT) type. In GS-type, modular addi-
tion/subtraction is done first, followed by modular multiplication
with the twiddle factors. CT-type, on the other hand, performs mod-
ular multiplication first, followed by modular addition/subtraction.
In terms of hardware implementation, there is a significant latency
difference between modular addition/subtraction and modular mul-
tiplication. By utilizing the results of modular addition in GS-type
NTT in advance, we can enhance overall efficiency. The proposed
optimization in our work significantly improves pipelined GS-type
NTT. Both types of NTT have the same computational effectiveness.

Figure 1: Data flow of 8-pt NTT.

In NTT, polynomial coefficients are extended from 𝑛-pt to 2𝑛-pt
through zero-padding to enable polynomial multiplication over the
ring 𝑥𝑛 + 1. However, this increases computational overhead, re-
ducing NTT efficiency. The Negative Wrapped Convolution (NWC)
[13] is introduced to avoid zero-padding, addressing this efficiency
concern. Polynomials 𝑎(𝑥) and 𝑏 (𝑥) can be modified before apply-
ing NTT by defining 𝑎𝑖 = 𝑎𝑖𝜔

𝑖 and 𝑏𝑖 = 𝑏𝑖𝜔
𝑖 , where 𝜔 represents

one of 2𝑛-th primitive roots of modulo 𝑞. After INTT, result 𝑐 (𝑥)
can be adjusted using 𝑐𝑖 = 𝑐𝑖𝜔

−𝑖 . This allows for coefficient correc-
tions under 𝑥𝑛 + 1 without zero-padding; However, it comes at the
expense of introducing three additional 𝑛-pt point-wise multiplica-
tions.

3 PROPOSED DESIGN
In this section, we present the details of HMNTT. Firstly, we discuss
the modular multiplication module’s design. Here, we construct the
modular multiplication module based on the resources and char-
acteristics of the FPGA to achieve maximum resource utilization
efficiency and operating frequency. Next, we introduce our improve-
ments to the Processing Element (PE) in the MDC-NTT, effectively
mitigating data collisions and backpressure between each stage of
PEs. Finally, we present the overall architecture of HMNTT, which
applies a four-step NTT algorithm. With the pipelined transpose
module, HMNTT allows flexible configuration of the number of
PEs, enhancing the trade-off between performance and cost across
diverse scenarios.

3.1 Modular Multiplication Module
Modular multiplication is a fundamental computational module in
NTT, comprising two key components: a large-number multiplier
and a modular reduction module.

In a large-number multiplier, the large numbers are decomposed
into sizes that closely match the bit-width of DSPs on the FPGA,
and multiple DSPs are utilized to perform the multiplication. We
employ the multiple layers Karatsuba method [9], which uses a
small number of additions to reduce the required multiplications.
Considering the structure of DSPs [8], which includes multiple
configurable adders, we incorporate some of the additions and sub-
tractions from the Karatsuba method into the DSPs. This approach
allows us to utilize the internal registers of the DSPs, saving a sig-
nificant amount of LUTs and FFs. Furthermore, the large-number
multiplier can achieve higher operating frequency with dedicated
routing available in the DSPs.

The commonly used modular reduction methods include Barrett
reduction [2] and Montgomery reduction [15]. Inspired by work
[6], the NTT-friendly Montgomery reduction method is highly suit-
able for FPGA platforms, as it consumes significantly fewer DSP
resources than Barrett reduction while remaining DSP-friendly. We
adopt the Montgomery reduction method proposed in [6], which
results in a modular reduction module consisting primarily of DSPs.
This approach saves logic resources and improves operating fre-
quency.

3.2 PE in HMNTT
In HMNTT, the Processing Element (PE) comprises a butterfly
computation logic and a data permutation logic, as illustrated in
Fig. 2. The butterfly computation logic, constructed with GS-type
NTT, is represented by the blue section, while the red FIFOs and
green MUXs represent the data permutation logic. Stride in NTT
refers to the interval step between elements within each stage. For
instance, in Fig. 1, the stride value is 4 for Stage 1, 2 for Stage 2, and
1 for Stage 3.

In the butterfly computation logic, the computational delay is
smaller in the modular addition/subtraction module compared to
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Figure 2: Microarchitecture of PE in HMNTT. The blue circle
with a ‘+’ symbol represents the modular addition module,
the blue circle with a ‘-’ symbol represents the modular sub-
traction module, and another one with an ‘x’ symbol repre-
sents the modular multiplication module. The lat𝑚𝑢𝑙 repre-
sents the latency of the modular multiplication module. We
divide the 𝑎𝑑𝑑𝑜𝑢𝑡 and𝑚𝑢𝑙𝑜𝑢𝑡 into two groups, splitting them
in half in terms of time. The first half is denoted with the
suffix "(0)", while the second half is denoted with "(1)".

the modular multiplication module, as the former has a relatively
simpler nature. To maintain the pipeline characteristics of the PE
and synchronize themwith the output of themodularmultiplication
module, it is essential to introduce a delay unit before feeding
them into the subsequent data permutation logic. In previous work,
conventional delay units were employed [6, 20], or certain details
were omitted [16, 19]. In our approach, we utilize a FIFO, FIFO𝐷 in
Fig. 2, to implement data delay logic. This enhances the data access
pattern and optimizes the data flow for NTT.

Specifically, when the data (𝑃𝐸𝑖𝑛0 and 𝑃𝐸𝑖𝑛1) enters the PE, it is
initially aligned for entry into the butterfly computation logic. In the
previous handling, it was essential to align the outputs to the data
permutation logic. We refer to the outputs as 𝑎𝑑𝑑𝑜𝑢𝑡 and𝑚𝑢𝑙𝑜𝑢𝑡 ,
corresponding respectively to the delayed output of the modular
addition module and the output of the modular multiplication mod-
ule. The first half of 𝑎𝑑𝑑𝑜𝑢𝑡 and𝑚𝑢𝑙𝑜𝑢𝑡 , denoted as 𝑎𝑑𝑑𝑜𝑢𝑡 (0) and
𝑚𝑢𝑙𝑜𝑢𝑡 (0), will be directly written into FIFO𝐴 and FIFO𝐵 , in the
data permutation logic, with 𝑆𝑒𝑙0 set to 0. Subsequently, the latter
half of 𝑎𝑑𝑑𝑜𝑢𝑡 , 𝑎𝑑𝑑𝑜𝑢𝑡 (1), bypasses to the PE’s output, denoted as
𝑃𝐸𝑜𝑢𝑡1, while the FIFO𝐴 storing 𝑎𝑑𝑑𝑜𝑢𝑡 (0) is simultaneously read,
labeled as 𝑃𝐸𝑜𝑢𝑡0. The latter half of𝑚𝑢𝑙𝑜𝑢𝑡 ,𝑚𝑢𝑙𝑜𝑢𝑡 (1), is concur-
rently written into FIFO𝐴 . At this point, the 𝑆𝑒𝑙0 is set to 1, while
the 𝑆𝑒𝑙1 is set to 0 and 1.

Once 𝑎𝑑𝑑𝑜𝑢𝑡 (0) and 𝑎𝑑𝑑𝑜𝑢𝑡 (1) are fully passed through into the
PE in the next stage, FIFO𝐴 and FIFO𝐵 are read, i.e.,𝑚𝑢𝑙𝑜𝑢𝑡 (1) and
𝑚𝑢𝑙𝑜𝑢𝑡 (0) are routed to the subsequent PE, referred to as 𝑃𝐸𝑜𝑢𝑡1 and
𝑃𝐸𝑜𝑢𝑡0, respectively. Simultaneously, the new 𝑎𝑑𝑑𝑜𝑢𝑡 and𝑚𝑢𝑙𝑜𝑢𝑡
can be stored in FIFO𝐴 and FIFO𝐵 . At this point, the 𝑆𝑒𝑙1 is set to 1
and 2, while 𝑆𝑒𝑙0 is set to 0, to select the new 𝑎𝑑𝑑𝑜𝑢𝑡 (0) for writing
into FIFO𝐴 .

When using FIFO𝐷 instead of conventional delay units, 𝑎𝑑𝑑𝑜𝑢𝑡
can enter the data permutation logic before𝑚𝑢𝑙𝑜𝑢𝑡 , allowing it to
be processed and output to the next stage ahead of time. As a result,
when𝑚𝑢𝑙𝑜𝑢𝑡 is pipelined, 𝑎𝑑𝑑𝑜𝑢𝑡 has already been processed by the
data permutation logic, requiring a shorter wait time or potentially
entering the data permutation logic without waiting. This leads to
faster processing speeds. Meanwhile, FIFOs have a queue depth.
When the subsequent pipeline stalls, 𝑎𝑑𝑑𝑜𝑢𝑡 can be stored in FIFO𝐷

instead of causing backpressure on the preceding PE, preventing
the generation of numerous bubbles in the pipeline for the modular
multiplication module. The depth of FIFO𝐷 is consistent with the
depth of the previous delay units, as shown in Fig. 2. The difference
is that it utilizes a few additional control signals to indicate the
empty and full state of the FIFO𝐷 . Additionally, at the interface,
𝑃𝐸𝑜𝑢𝑡0 is augmented with a pair of handshake signals to ensure
compactness and correctness of the timing. By adding a minimal
amount of control logic, we achieve significant optimization bene-
fits as demonstrated in the data flow shown in Fig. 3.

Fig. 3 demonstrates the optimization effect using a demo. The
‘Before Improvement’ represents the data access pattern of the
PE before optimization, while the ‘After Improvement’ illustrates
the optimized data access pattern. The demo showcases that our
optimization accelerates data processing and alleviates the back-
pressure from the subsequent PE to the preceding PE. Considering
an 𝑛-pt NTT, our optimization allows each stage to reduce latency
by half of the stride, with the stride starting at 𝑛

2 and decreas-
ing exponentially at each stage, leading to a total optimization of
⌊ 14

∑𝑙𝑜𝑔2𝑛
𝑖=0

𝑛
2𝑖 ⌋ =

𝑛
2 − 1 cc. This is achieved by leveraging the delay

in the modular multiplication module to advance the 𝑎𝑑𝑑𝑜𝑢𝑡 , thus
mitigating data conflicts. Additionally, during the 9 cc to 11 cc in
Fig. 3, there are pipeline bubbles in the output of the optimized
PE. This is because our demo starts with initialization, which intro-
duces bubbles in the pipeline. However, once the pipeline is fully
operational, it operates efficiently without any bubbles, as shown
in the timeframe from 19 cc to 20 cc in Fig. 3. Furthermore, by
replacing the delay units with FIFO𝐷 , we have gained significant
flexibility in the timing of the 𝑎𝑑𝑑𝑜𝑢𝑡 . This allows the 𝑎𝑑𝑑𝑜𝑢𝑡 to be
output based on the occupancy of the FIFO𝐷 in data permutation
logic, as demonstrated in the 9 cc to 11 cc timeframe in Fig. 3.

3.3 Flexible Architecture of HMNTT
We first introduce the four-step NTT employed by HMNTT, as
illustrated in Alg. 1. We make slight adjustments to the four-step
NTT algorithm by using bit-reversal of subsize NTT, achieving
NTT mapping from natural order to natural order. BR in Alg. 1
denotes the bit-reversal permutation, and the subscripts indicate the
dimensions of the corresponding operations. In the preprocessing
step of the four-step NTT algorithm, the coefficients in natural order
undergo a reshaping process from a one-dimensional layout to a
two-dimensional array of size 𝐼 × 𝐽 (when 𝐼 ∗ 𝐽=𝑁 ), as illustrated in
Fig. 4 (Coeff Reshape). 𝐼 -size NTT is performed separately for each
column, a total of 𝐽 times as shown in Loop 1 in Alg. 1. Then, the
results of Loop 1 are multiplied by the twiddle factors. The power
of the twiddle factor is determined by the bit reverse of the row
index, 𝑖 , and column index, 𝑗 , of the corresponding element in the
two-dimensional array, as illustrated in Loop 2. The output results
also need to undergo bit reversal. Next, a 𝐽 -size NTT is performed
for each row of the original two-dimensional array for 𝐼 times, as
shown in Loop 3. The output results are once again subjected to
bit reversal in column style and unfolded into a one-dimensional
array to obtain the evaluation representations in the natural order,
as shown in Fig. 4 (Eval Reshape).

Through Alg. 1, we establish the flexible architecture of HMNTT,
as depicted in Fig. 5. We cascade the PEs to create TinyNTT ca-
pable of handling the 𝐼 -size NTT/𝐽 -size NTT. Each level of PE is
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Figure 3: Optimized Data Access Pattern for HMNTT: A 16-pt NTT Demo. The figure shows the first stage of a 16-pt NTT with a
stride of 8. Assuming a modular multiplication module latency of 8 clock cycles (cc) and modular addition module latency of 1
cc to emphasize their delay disparity, the optimized data access pattern allows for data output to be advanced by 4 cc (half the
stride).
Algorithm 1 Four-step NTT
1: Input: coeff1×𝑁 (natural order).
2: Coeff Reshape: coeff1×𝑁 → coeff𝐼× 𝐽
3: for 𝑗 in range (𝐽 ) do ⊲ Loop 1
4: coeff𝐼× 𝐽 = NTT𝐼−𝑝𝑡 (coeff[0 → 𝐼 ][ 𝑗]) ⊲ Step 1: 𝐼 -size NTT.
5: for 𝑗 in range (𝐽 ) do ⊲ Loop 2
6: for 𝑖 in range (𝐼 ) do
7: 𝑖′ = Bit reverse (𝑖)
8: coeff𝐼× 𝐽 [𝑖][ 𝑗] = coeff𝐼× 𝐽 [𝑖][ 𝑗]*𝑔

𝑖′∗𝑗
𝑁

⊲ Step 2:
Multiplying by twiddle factors.

9: BR𝐼 (coeff𝐼× 𝐽 ) ⊲ Step 3: Bit reversal in the 𝐼 -size NTT.
10: for 𝑖 in range (𝐼 ) do ⊲ Loop 3
11: eval𝐼× 𝐽 = NTT𝐽 −𝑝𝑡 (coeff[𝑖][0 → 𝐽 ]) ⊲ Step 4: 𝐽 -size NTT.
12: BR𝐽 (eval𝐼× 𝐽 ) ⊲ Step 5: Bit reversal in the 𝐽 -size NTT.
13: Eval Reshape: eval𝐼× 𝐽 → eval1×𝑁 .
14: Output: eval1×𝑁 (natural order).

Figure 4: The reshaping process of elements in the four-step
NTT algorithm. The letters/numbers in the figure represent
the indices of the elements.

responsible for completing a stage outlined in Fig. 1. The final level
of PE requires only a modular addition module and a modular sub-
traction module, as the twiddle factor is 1. The number of TinyNTT
modules in HMNTT is configurable, allowing for faster or more
area-efficient NTT. This configuration is analogous to partially un-
rolling the three loops in Alg. 1. Meanwhile, the results of the 𝐼 -size
NTT enter the Twisting Module for modular multiplication with
the twiddle factors, as indicated in Loop 2 in Alg. 1. Since HMNTT
is pipelined, the Twisting Module is primarily composed of a set
of modular multiplication modules equivalent to the number of
the TinyNTT modules, along with a memory structure for twiddle
factors. Moreover, the Twisting Module does not affect the overall
latency. We store twiddle factors in advance due to their relatively
constant nature during calculations. One optimization involves
the on-the-fly (OF) generation of twiddle factors during computa-
tion to reduce on-chip storage. However, introducing new modular
multiplication modules for OF calculations can increase the area
consumption. In our benchmark, reusing modular multiplication
modules in the Twisting module leads to about 33% extra latency
with no significant area reduction, which is not cost-effective for
ATP. OF should be considered when facing limited on-chip storage
or NTT with much larger degrees.

However, some performance-degrading issues may arise once
there is more than one TinyNTT module in HMNTT. Assuming the
original data access of the NTT is in 𝐼 banks of SRAM or 𝐽 banks of
SRAM, the distinct input dimensions required by 𝐼 -size NTT and
𝐽 -size NTT inevitably lead to bottlenecks in data read/write due
to the limitations on the number of SRAM read/write ports. This
bottleneck results in stalls and introduces significant bubbles in the
pipeline, thus compromising performance. To address this issue, we
introduce a pipelined transpose module to switch the data access
dimensions between 𝐼 -size NTT and 𝐽 -size NTT. We leverage the
low bandwidth requirements of the pipelined NTT and implement
data transposition using a limited number of registers. As illustrated
in Fig. 5, data enters along the green (orange) arrows, propagates to
the right (down), and when filled, proceeds downward (to the right)
along the orange (green) arrow, serving as input to the TinyNTT.
Simultaneously, new data can enter the transpose module along the
orange (green) arrows and, once filled, change direction for output.
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Figure 5: Architecture of HMNTT. Elements are accessed and stored in Multi-bank SRAM in the form of a two-dimensional
array, as depicted in Fig. 4. TinyNTT performs 𝐼 -size NTT and 𝐽 -size NTT. The number of PEs needed in one TinyNTT is
determined by log2(max(𝐼 , 𝐽 )). To maintain compatibility for min(𝐼 , 𝐽 )-size NTT, we can bypass the preceding PEs. The Twisting
Module handles Step 3 in Alg. 1, which involves multiplying intermediate results with twiddle factors. HMNTT computes the
address for writing data into Multi-bank SRAM based on the bit-reversal rule.

The transpose unit is fully pipelined with registers exchanging
data with adjacent ones and registers on the output side using
2-to-1 MUXs for selection. It efficiently addresses the previously
mentioned performance degradation issues with minimal resource
overhead.

4 EVALUATION
We conduct a comprehensive evaluation of HMNTT. Our pro-
posed design is evaluated using Verilog HDL on an AMD-Xilinx
XC7VX690T FPGA, and synthesis and implementation are carried
out using AMD-Xilinx Vivado 2022.1 tools. For our benchmark, we
choose 𝐼 and 𝐽 as the powers of 2. TinyNTT is designed to handle
max(𝐼 , 𝐽 )-size NTT. By selecting close values of 𝐼 and 𝐽 (Identical is
better), we optimize the computational efficiency of the PEs in HM-
NTT while minimizing the number of PEs required and the twiddle
factors usage. The number of twiddle factors used in the Twisting
module is unaffected. For instance, with a 1024-𝑝𝑡 NTT, selecting
𝐼=𝐽=32 requires only 5 PEs for TinyNTT, whereas choosing 𝐼=128
and 𝐽=8 would require 7 PEs, with the first 4 PEs remaining idle
during 𝐽 -size NTT.

In Tab. 1, we present a performance comparison between HM-
NTT with existing works [1, 4, 6, 10–12, 14, 18, 20]. Given that
HMNTT is designed for privacy-preserving applications such as
RNS-FHE and PQC algorithms, where the bit width is typically con-
strained to 64 bits or less, we benchmark three scenarios: 𝑁 = 1024,
𝑙𝑜𝑔2𝑞 = 28; 𝑁 = 4096, 𝑙𝑜𝑔2𝑞 = 28; and 𝑁 = 4096, 𝑙𝑜𝑔2𝑞 = 64.
We provide evaluations for HMNTT_v1 (with one TinyNTT mod-
ule) and HMNTT_v2 (with two TinyNTT modules) under each
benchmark.

We provide a detailed report of the platforms, latency/clock cy-
cles, and resource consumption for all works. Given the variability
in the resources utilized by each work, we normalize all resources
using the formula referred to in [20], as outlined in Tab. 1 under
the ‘Area’ metric. Furthermore, we employ the Area-Time Product
(ATP) metric, comprehensively considering latency and resource
consumption. A smaller ATP value is preferable. Works [1, 7, 10, 11]
utilize AMD-Xilinx’s advanced FPGA platforms, featuring more ad-
vanced process technology and enhanced DSP for reduced resource
consumption and smaller latency. Compared to works [20] and [6],
both of which represent the latest works employing pipelined NTT

architectures, HMNTT achieves an average of 2.34× fewer and
1.26× fewer ATP when considering both configurations. Results
demonstrate a significant ATP advantage for HMNTT compared to
other works. Work [6] achieves low clock cycles and resource usage.
However, it underperforms in terms of ATP compared to our de-
sign. This is because this work prioritizes minimizing clock cycles,
neglecting FPGA adaptability and large-degree NTT applicability
in a pipeline architecture. HMNTT employs the four-step NTT
algorithm to eliminate the requirement for deep FIFOs. It optimizes
the PE by replacing the conventional delay unit with FIFO and
introducing additional handshake signals and registers to enhance
its performance. Despite the increased clock cycles introduced by
the four-step NTT algorithm for data access, the optimization in
PE partially mitigates this impact. These techniques result in better
timing and higher FPGA efficiency. Consequently, HMNTT outper-
forms work [6] in ATP metrics. Optimized PE design and the use
of the four-step NTT algorithm, which is well-suited for pipelined
NTT architectures, minimizes resource usage and enables higher
operating frequency. However, this comes with increased BRAM
storage for twiddle factors and intermediate results. Nevertheless,
the BRAM consumption in our design remains relatively low, sig-
nificantly below the BRAM consumption in other works. Across
the three benchmarks, our design achieves an average savings of
3.6×, 2.8×, and 4.7× in terms of BRAM consumption. With lower
bandwidth requirements in pipelined NTT architectures, HMNTT
can efficiently compute bit-reversal data indices during data output,
eliminating the need for reorder operations on BRAM-stored data.

5 CONCLUSION
In this paper, we propose a highly efficient MDC-NTT architecture,
HMNTT. Built on the four-step NTT algorithm, HMNTT is well-
suited for privacy-preserving applications involving polynomials
with large degrees, showcasing remarkable scalability. We optimize
PE in HMNTT to reduce data collision and alleviate backpressure
in the data flow. In practical FPGA implementation, we consider de-
vice characteristics, conserving resources, and improving operating
frequency. The evaluation findings indicate that HMNTT achieves
an average 2.34× and 1.26× reduction in ATP when compared to
the latest pipelined NTT architectures.
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Work Plat. Param. (𝑁 , 𝑙𝑜𝑔2𝑞)
Freq.
(MHz)

Resource Area1 Lat.(𝜇s) /
Clock Cycles ATPLUT FF DSP BRAM

Ye 𝑒𝑡 𝑎𝑙 . [20] Virtex-7 1024, 28-bit 175 3.4k 3.1k 63 6 11.5k 6/2114 69.0k (2.49×)
Hirner 𝑒𝑡 𝑎𝑙 . [6] Virtex-7 1024, 28-bit 150 6.9k 3.2k 36 2 11.1k 3.46/518 38.4k (1.39×)
Mert 𝑒𝑡 𝑎𝑙 . [14] Virtex-7 1024, 28-bit 125 16k 14k 56 24 28.8k 3.9/490 112.3k (4.05×)
Geng 𝑒𝑡 𝑎𝑙 . [4] Virtex-7 1024, 32-bit 244 9.5k 4.7k 64 12 19.5k 2.67/652 52.1k (1.88×)
Su 𝑒𝑡 𝑎𝑙 . [18] Virtex-7 1024, 32-bit 250 10.3k 6.7k 80 79 42k 2.6/- 109.2k (3.94×)
Li 𝑒𝑡 𝑎𝑙 . [11] XCKU060 1024, 32-bit 190 25.6k 16.5k 48 28.5 39.0k 1.81/343 70.6k (2.55×)
HMNTT_v12 Virtex-7 1024, 28-bit 332 3.2k 4.0k 36 3 7.7k 3.6/1202 27.7k (1.00×)
HMNTT_v23 Virtex-7 1024, 28-bit 319 6.7k 8.6k 72 6 15.7k 2.2/690 34.5k (1.25×)
Hirner 𝑒𝑡 𝑎𝑙 . [6] Virtex-7 4096, 28-bit 150 8.4k 4.0k 44 8 15.2k 13.8/2069 209.8k (1.44×)
Hu 𝑒𝑡 𝑎𝑙 . [7] UltraScale+ 4096, 28-bit 400 5.9k 4.5k 12 8 9.5k 15.4/6158 146.3k (1.01×)

Ayduman 𝑒𝑡 𝑎𝑙 . [1] AU280 4096, 32-bit 181 29.8k 21.4k 224 48 66.6k 4.3/792 286.4k (2.00×)
Geng 𝑒𝑡 𝑎𝑙 . [4] Virtex-7 4096, 32-bit 244 5k 2.8k 32 14 12.4k 25.2/6156 312.5k (2.15×)
Su 𝑒𝑡 𝑎𝑙 . [18] Virtex-7 4096, 32-bit 250 14k 8.7k 80 79 45.7k 12.3/- 562.1k (3.87×)
HMNTT_v12 Virtex-7 4096, 28-bit 329 3.9k 4.9k 42 12 11.7k 13.2/4336 154.4k (1.06×)
HMNTT_v23 Virtex-7 4096, 28-bit 317 8.2k 10.3k 84 12 20.2k 7.2/2290 145.4k (1.00×)
Ye 𝑒𝑡 𝑎𝑙 . [20] Viertex-7 4096, 60-bit 150 17k 11k 286 24.5 53.0k 27.5/8284 1457.5k (2.61×)

Kurniawan 𝑒𝑡 𝑎𝑙 . [10] UltraScale+ 4096, 60-bit 250 74.5k 61.4k 288 155 149.8k 3.8/951 569.2k (1.02×)
Mert 𝑒𝑡 𝑎𝑙 . [14] Virtex-7 4096, 60-bit 125 22k 17k 248 96 75.6k 26/3276 1965.6k (3.52×)
Hu 𝑒𝑡 𝑎𝑙 . [7] UltraScale+ 4096, 60-bit 152 17.2k 17.5k 144 48 46k 20.37/3086 937.0k (1.68×)
Liu 𝑒𝑡 𝑎𝑙 . [12] Virtex-7 4096, 60-bit 150 14.1k 12.5k 336 41 60k 20.5/3081 1230k (2.20×)
Hirner 𝑒𝑡 𝑎𝑙 . [6] Virtex-7 4096, 64-bit 150 22.6k 18.0k 220 16 49.4k 13.8/2069 681.7k (1.22×)
HMNTT_v12 Virtex-7 4096, 64-bit 241 9.2k 12.6k 133 24 29.7k 18.8/4536 558.4k (1.00×)
HMNTT_v23 Virtex-7 4096, 64-bit 211 18.9k 26.7k 266 24 52.7k 11.8/2490 621.9k (1.11×)

1 The Area is measured by #LUTs+100×#DSPs+300×#BRAMs [20]. 2 Use one TinyNTT module. 3 Use two TinyNTT modules.
Table 1: Evaluation Results and Comparison with Previous Works.
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