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ABSTRACT
Multi-Scalar Multiplication (MSM) is a fundamental cryptographic
primitive, which plays a crucial role in Zero-knowledge proof sys-
tems. In this paper, we optimize the single MSM Process Element
(PE) utilizing buckets with fewer conflicts, enhanced by Greedy-
based scheduling, to achieve higher efficiency. The evaluation re-
sults show our optimized single MSM PE achieving a speedup of
over two times on average, peaking at 3.63 times compared to pre-
vious works. Furthermore, we introduce Gypsophila, a scalable
and bandwidth-optimized architecture for implementing multiple
MSM PEs. Leveraging the characteristics of the bucket method,
we optimize the data flow by balancing the throughput of bucket
classification, bucket aggregation, and result aggregation in MSM.
Simultaneously, multiple PEs with different data access patterns
share a universal point input channel and post-processing unit,
which improves the module utilization and mitigates the bandwidth
pressure. Gypsophila with 16 PEs, accomplishes 16 MSM tasks in
a mere 1.01% additional time, showcasing an approximate 7.8% re-
duction in area, with only about 1

16 of the bandwidth requirement,
compared with 16 PEs without input channel and post-process unit
sharing.
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1 INTRODUCTION
Multi-Scalar Multiplication (MSM) represents an important task in
cryptography, particularly in Zero-knowledge proofs (ZKP) [9]. The
MSM operation with 𝑁 degrees aims to multiply the scalars ®𝑎, a set
of N integers [𝑎0, 𝑎1, · · · , 𝑎𝑁−1], with a cyclic group G represented
by a set of points [𝐺0,𝐺1, · · · ,𝐺𝑁−1] on an elliptic curve. It can be
expressed as follows:

𝑀𝑆𝑀 ( ®𝑎,G) = 𝑎0 ·𝐺0 + 𝑎1 ·𝐺1 + · · · + 𝑎𝑁−1 ·𝐺𝑁−1 . (1)

While the algorithmmay seem straightforward, point operations on
elliptic curves are computationally concentrated. Moreover, with
the increasing demand for applications in recent years, the degree of
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MSMhas grown larger. The Pippenger algorithm [5, 15], also known
as the bucket method, has been introduced into MSM. Decomposing
the scalar enables the application of pipeline techniques to MSM,
making it particularly effective in managing larger degrees of MSM.

In simple terms, the bucket method breaks down MSM into mul-
tiple reduced MSMs. Bucket classification and bucket aggregation
steps are then performed on each reduced MSM to obtain their
respective results. Finally, the results of the reduced MSMs are ag-
gregated through a result aggregation step to obtain the final result.
Further details are presented in Section 2.2.

Figure 1: A Comparison of Gypsophila with Other Works.

RelatedWorks: Numerous MSM acceleration schemes based on
CPU, GPU, FPGA, and ASIC have been proposed. In [13], a bucket
set construction is introduced, which can be applied to Pippenger’s
bucket method to accelerate MSM over fixed points through pre-
computation. The work [6] employs hand-written arm64 assembly
for accelerating the finite field arithmetic in mobile applications.
The work [12] and [14] present GPU implementations of MSM,
which achieve favorable execution results. The work [17] was the
first hardware implementation to leverage bucket methods for zk-
SNARKs using ASIC. While it offered valuable insights, the design
still leaned towards a conservative approach, which posed consid-
erable bandwidth constraints. In [16], [1] and [2], FPGA implemen-
tations of MSM are presented. Despite numerous improvements,
we believe there is room for enhancing their scheduling, suggesting
additional opportunities to minimize pipeline bubbles and address
data hazards. More importantly, these works primarily focus on a
single MSM task. When confronted with multiple MSM tasks, their
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designs can only be straightforwardly replicated. The demands on
bandwidth and resources increase linearly, and their architectures
overlook scalability as well as dataflow optimization strategies for
handling multiple MSM tasks. MSM dominates the proof genera-
tion stage in various concrete ZKP schemes [12, 13, 16]. With the
increasing use of ZKP, there is an increasing demand for MSM com-
putations. This underscores the need to optimize the architecture
for multiple MSM PEs, serving as a key motivation for our work.

Our Contributions: In this paper, we introduce Gypsophila,
an end-to-end scalable and bandwidth-optimized architecture for
multiple MSM PEs. The proposed design is based on the bucket
method, supporting parallel computation of multiple MSM PEs.
Specifically, Gypsophila is meticulously optimized for scalability,
aiming to alleviate bandwidth requirements and enhance data and
resource utilization efficiency. Figure 1 provides a concise archi-
tectural overview, illustrating the distinctions between our work
and other works when handling multiple MSM tasks. Other works
typically use the same hardware for bucket classification, bucket
aggregation, and result aggregation, or they may offload the latter
two to the host. In contrast, our design divides these three steps into
distinct modules. Balancing their execution times forms a pipeline
between modules, improving overall throughput. Below are the
details of our contributions:
• We optimize the MSM PE. Each pipelined MSM PE is a thread
within our design, which is powered by a pipelined point
adder (pPADD). We employ a combination of Queues and
Buckets with fewer conflicts, coupled with Greedy-based
scheduling, to minimize the bubbles in the pipeline and data
hazards for the bucket classification in MSM.
• We propose Gypsophila, an architecture tailored for sce-
narios with multiple MSM PEs. Utilizing the characteristics
of the bucket method, Gypsophila employs a streamlined
dataflow organization by balancing the throughput of the
bucket classification, bucket aggregation, and result aggrega-
tion within MSM. This allows Gypsophila to achieve PE-level
scalability without compromising performance. Simultane-
ously, multiple PEs exhibit diverse data access patterns yet
can share a universal point channel and post-processing unit,
an area-efficient point adder (aPADD), optimizing module
utilization and mitigating bandwidth pressure.
• We implement Gypsophila in Verilog HDL, and evaluate
four versions, PE-1 (single PE), PE-2 (dual PEs), PE-4 (4 PEs)
and PE-16 (16 PEs). The evaluation results demonstrate a
significant improvement in the speed of a single MSM PE,
surpassing previous work by 3.63x in time consumption and
5.06x in clock cycles. With 16 MSM PEs, the speed loss is
minimal, reaching only 1.01% compared to the unoptimized
linear expansion of MSM PEs. Through resource sharing, we
achieve a substantial area reduction of approximately 7.8%.

2 BACKGROUND
2.1 Brief Introduction to Elliptic Curves
In mathematics, an elliptic curve 𝐸 over 𝐹𝑞 is the set of points that
satisfy Equation 2.

𝑦2 = 𝑥3 + 𝑎𝑠𝑤 · 𝑥 + 𝑏𝑠𝑤 . (2)

The coefficients 𝑎𝑠𝑤 and𝑏𝑠𝑤 must satisfy a certain condition 4𝑎3𝑠𝑤 +
27𝑏2𝑠𝑤 ≠ 0. Here, the parameters 𝑎𝑠𝑤 and 𝑏𝑠𝑤 serve exclusively as
the elliptic curve’s parameters. Equation 2 is commonly referred to
as the Short Weierstrass curve. There are other curve forms, such
as Montgomery curves and Twisted Edwards curves. In specific
contexts, different curves are birationally equivalent [4, 7]. The
Twisted Edwards curve, as shown in Equation 3, is preferred for its
expedited computation, attributed to the efficiency of its addition
formula. This efficiency arises from the curve’s robust completeness
property, enhancing its performance in cryptographic protocols.

𝑎𝑡𝑒 · 𝑥2 + 𝑦2 = 1 + 𝑑𝑡𝑒 · 𝑥2 · 𝑦2 . (3)

The representation of points on an elliptic curve includes affine
coordinates (𝑥,𝑦), as in Equations 2 and 3, and projective coordi-
nates (𝑋,𝑌, 𝑍 ). Affine coordinates (𝑥,𝑦) are equivalent to (𝑋/𝑍,𝑌/𝑍 ).
Extended coordinates under Twisted Edwards curves are discussed
in [8, 10]. By introducing an auxiliary coordinate𝑇 = 𝑋𝑌 , (𝑋,𝑌, 𝑍,𝑇 )
in extended projective coordinates can represent (𝑋,𝑌, 𝑍 ) in projec-
tive coordinates. The addition formula utilizing extended projective
coordinates in the Twisted Edwards curves avoids inefficient modu-
lar inversion operations, achieving point addition with fewer mod-
ular multiplication operations. Furthermore, this addition formula
is unified. In Equation 1, the addition of points 𝐺𝑖 on the elliptic
curve produces another point on the same elliptic curve.

2.2 Pippenger Algorithm
MSM is shown in Equation 1. Each 𝑎𝑖 ·𝐺𝑖 could be computed with:

𝐺𝑖 +𝐺𝑖 + · · · +𝐺𝑖 .︸                 ︷︷                 ︸
𝑎𝑖 𝑡𝑖𝑚𝑒𝑠

(4)

The naive method to perform 𝑎𝑖 ·𝐺𝑖 is to use the double-and-add
method with point addition and point double.

In Algorithm 1, we present a succinct overview of the bucket
method tailored for MSM with N degree employing 𝑏-bit scalars.

Algorithm 1 Pippenger Algorithm
1: Init: set 𝑆 , 𝑅,𝑀𝑆𝑀 ( ®𝑎,G) = NULL (Point at infinity)
2: BC: Bucket Classification
3: for 𝑗 = 0, 𝑗 < 𝑚, 𝑗 + + do
4: for 𝑖 = 0, 𝑖 < 𝑁, 𝑖 + + do
5: set 𝑘 = 𝑎𝑖 𝑗 ⊲ Identify the target bucket.
6: 𝑆 𝑗,𝑘 ← 𝑆 𝑗,𝑘 +𝐺𝑖

7: end for
8: end for
9: BA: Bucket Aggregation
10: for 𝑗 = 0, 𝑗 < 𝑚, 𝑗 + + do
11: for 𝑘 = 2𝑐 − 1, 𝑘 > 0, 𝑘 − − do
12: 𝑅 𝑗 ← 𝑅 𝑗 + 𝑆 𝑗,𝑘
13: 𝑆 𝑗,𝑘−1 ← 𝑆 𝑗,𝑘 + 𝑆 𝑗,𝑘−1
14: end for
15: end for
16: RA: Result Aggregation
17: for 𝑗 =𝑚 − 1, 𝑗 ≥ 0, 𝑗 − − do
18: 𝑀𝑆𝑀 ( ®𝑎,G) ← 2𝑐 ·𝑀𝑆𝑀 ( ®𝑎,G) + 𝑅 𝑗

19: end for
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By dividing MSM with 𝑏-bit scalars into 𝑚 = ⌈𝑏𝑐 ⌉ groups of
smaller reduced MSM with 𝑐-bit scalars, each 𝑎𝑖 can be presented
as:

(𝑎𝑖 (𝑚−1) , · · · , 𝑎𝑖 𝑗 , · · · , 𝑎𝑖1, 𝑎𝑖0). (5)
A reduced scalar set is comprised of N elements, denoted as 𝑎𝑖 𝑗 ,
where the index 𝑗 remains constant. In conjunction with point
groups, they constitute a reduced MSM.

𝑆𝑘 =

𝑁∑︁
𝑖=1
(𝑎𝑖 𝑗 == 𝑘) ·𝐺𝑖 . (6)

𝑅 𝑗 =

𝑁∑︁
𝑖=1

𝑎𝑖 𝑗 ·𝐺𝑖 =

2𝑐−1∑︁
𝑘=0

𝑘 · 𝑆𝑘 . (7)

𝑀𝑆𝑀 ( ®𝑎,G) =
𝑁∑︁
𝑖=1

𝑎𝑖 ·𝐺𝑖 =

𝑚−1∑︁
𝑗=0

𝑁∑︁
𝑖=1

2𝑗𝑐 · 𝑎𝑖 𝑗 ·𝐺𝑖 =

𝑚−1∑︁
𝑗=0

2𝑗𝑐 · 𝑅 𝑗 .

(8)
Bucket classification, as Equation 6 shows, classifies points into

different buckets based on their indexes, involving𝑚(𝑁 − 2𝑐 ) point
addition operations. Bucket aggregation, as Equation 7 shows, ag-
gregates these buckets to derive the results of reduced MSMs, re-
quiring 𝑚(2𝑐+1) point addition operations. Finally, result aggre-
gation, as Equation 8 shows, consolidates these results to obtain
𝑀𝑆𝑀 ( ®𝑎,G), needing 𝑏 +𝑚 − 𝑐 − 1 point addition operations. Result
aggregation can be decomposed, and implemented after the bucket
aggregation of each reduced MSM.

3 PROPOSED DESIGN
In this section, we initially introduce the overall architecture of
Gypsophila. We propose optimization strategies primarily focused
on alleviating bandwidth and PPA metrics, given the dominance of
bucket classification in MSM computation time. Then, we introduce
MSM PE, responsible for performing bucket classification. Finally,
we showcase the post-processing module, managing output from
the MSM PE and performing both bucket aggregation and result
aggregation.

3.1 Gypsophila
The comprehensive architecture of Gypsophila is illustrated in Fig-
ure 2. We employ a thread to represent an individual MSM PE. The
number of threads is parameterized, and each thread is dedicated
to a bucket classification. Each thread gets the scalars from the
Scalar ping-pong Buffer, and the points from Shared Point Buffer
(S-P Buffer). For MSM, the scalars are variable while the points are
relatively constant. To maximize the reuse of these points and alle-
viate the bandwidth pressure of MSM (considering the substantial
overhead of points), multiple threads can share the input points
and operate in a highly synchronized manner. The input data only
needs to increase by the bit width of an index as the number of
PEs grows. This approach significantly reduces the previously sub-
stantial increase in bandwidth. However, the S-P Buffer cannot be
independently read by multiple threads according to their own data
access patterns. Our solution involves incorporating register slices
and FIFOs on the data path from the S-P Buffer to each thread,
acting as a “virtual” individual point buffer for each thread. This
arrangement allows each thread to operate as if it has an indepen-
dent point buffer, reducing data dependencies between threads in

this architecture. Based on our assessment, utilizing the “virtual”
point buffer design significantly increases point reuse. However,
the synchronization of points between different channels also in-
troduces additional time overhead, which is analyzed in Section 4.2.
Thus, concurrent processing of all threads is feasible, and this also
contributes to improving timing in the actual layout and routing.
We also configure the Scalar Buffer in a ping-pong buffer structure
to mask the latency of data input.

Figure 2: Overall architecture of Gypsophila. The red dashed
box above represents the bucket classification, while the blue
dashed box below signifies the bucket aggregation and result
aggregation.

The design of Gypsophila is organized with streamlined dataflow,
as illustrated in Figure 3. We employ Bucket Classification (BC)
Buffers in Figure 2 to capture thread outputs and relay them to the
shared aPADD. In that case, threads can proceed to the next round
of calculations as soon as possible. Both [17] and [2] delegate this
task to the host. Work [1] does not provide a clear solution. While
work [16] employs the same EC Adder to perform this computation,
it results in redundant performance for pPADD and compromises
data throughput.

Multiple threads initially store their outcomes in distinct BC
Buffers. These threads collaboratively access a Shared aPADD to
execute the bucket aggregation and result aggregation. More de-
tails about aPADD will be introduced in Section 3.3. Given that the
latency of the bucket classification dominates the computation time
in MSM, the Shared aPADD effectively capitalizes on this period
to manage the bucket aggregation and result aggregation for nu-
merous threads. The arbitration logic is determined by whichever
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thread finishes first. To maintain a balanced execution time, it is
feasible to utilize more Shared aPADDs in specific contexts. While
this introduces additional overhead, the added costs are minimal.
The data path from the BC Buffer to the Shared aPADD incorpo-
rates both register slices and FIFOs, contributing to enhancements
in layout and routing efficiency. Increasing the number of PEs can
simultaneously increase data throughput, highlighting the perfor-
mance enhancement brought about by Gypsophila’s scalability.

Figure 3: The dataflow organization of Gypsophila. The same
color indicates membership to the same reduced MSM. DIN
represents data input, BC is bucket classification, and BR
stands for both bucket aggregation and result aggregation.

3.2 MSM PE
The MSM PE serves as the fundamental thread in our architecture
and is responsible for executing the bucket classification within
MSM. In the bucket classification of the Pippenger Algorithm, both
points and scalars, depicted as a set of indexes based on radix 2𝑐 ,
are fetched from the external DRAM and relayed through the I/O
buffer. The results, a group of points will be sent back through the
I/O buffer.

Figure. 4 shows the overviewmicroarchitecture of MSM PE. Each

Figure 4: Microarchitecture overview of a single MSM PE.

time, points are transferred into Buckets (consisting of multiple
slots) addressed by the corresponding indexes, and the correspond-
ing point slots are marked to busy. When another point with the

same index tries to take up the point slot marked as busy, the sched-
uler matches these two points as a pairing of points and sends this
pair into the Pairing Queue. pPADD is fed by Pairing Queue, and
it could handle a complete point addition operation with a strong
intensive pipeline. The result of pPADD will be stored back to the
corresponding point slot. However, due to the random distribution
of scalars, inevitable conflicts will arise when the result of pPADD
and point from I/O Buffer attempt to simultaneously access to,
or pair within the Buckets, which are implemented with SRAMs.
We use the Collision Queue to store these conflicting points for
processing during idle intervals.

We propose two methods to mitigate conflicts during this pro-
cess while also minimizing pipeline bubbles in pPADD. First, the
scheduler advocates for integrating Greedy-based scheduling, al-
lowing the immediate pairing of points when their indexes align.
This is facilitated by a fully pipelined point adder (pPADD), ca-
pable of supporting point addition in extended coordinates and
complemented by a spacious Pairing Queue. Secondly, we intro-
duce Buckets with fewer conflicts. Conflicts are confined to each
bank of Buckets, significantly reducing the likelihood of entries
into the Collision Queue and thereby minimizing pipeline bubbles
of pPADD. Buckets with fewer conflicts enhance the performance
of the bucket classification.

We construct the fully pipelined PADD with 9 modular mul-
tiplication units [10]. We assert that the use of MixedAdd [1, 8]
could lead to data dependencies in the bucket classification. To mit-
igate this, we recommend adopting a point addition algorithm in
extended coordinates, as this will help to break data dependencies
and minimize pipeline bubbles. Furthermore, we employ a 4-layer
Karatsuba method [11] and the Barrett reduction algorithm [3, 16]
to optimize the area of the modular multiplication unit. The 𝜔NAF
technique [1] is also used to reduce the area overhead of Buckets.

3.3 Bucket Aggregation & Result Aggregation
Post-processing, comprising both bucket aggregation and result ag-
gregation, must be conducted for a set of points within the buckets
of the MSM PE after bucket classification. In bucket classification,
pPADD efficiently processes incoming points in a pipelined manner
for high performance. However, in bucket aggregation and result
aggregation, performance is hindered by dependencies among post-
processed points, preventing pipelined processing. This leads to
performance inefficiencies and potential backpressure on the input
of the next data round, ultimately reducing throughput.

Figure 5: Simple structure of aPADD.

We introduce an area-efficient PADD (aPADD) to handle both
bucket aggregation and result aggregation, preventing it from be-
coming a bottleneck that hampers the overall throughput of the
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Table 1: Resource and Power Consumption for Gypsophila

Design Platform Area/Resource Power

PE-1(377w) Xilinx
Virtex

UltraScale+
XCVU13P
(200MHz)

(1469k(CLBs)/
3684(DSPs) 48.91W

PE-2(377w) 2783k(CLBs)/
7122(DSPs) 95.12W

PE-4(256w) 2462k(CLBs)/
6858(DSPs) 81.04W

PE-16(377w) TSMC 12nm
(1GHz1) 79.80 mm2 45.25W

1 We set the target frequency to 1GHz. The results indicate that the critical
path is less than 1ns, demonstrating significant potential for achieving
higher frequency.

design while minimizing cost. This is crucial as Gypsophila adopts a
streamlined dataflow organization. Figure 5 showcases the aPADD
design. By leveraging multiple registers and a Large number multi-
plication unit (mul), combined with the controlling logic, we have
constructed an aPADD that offers comparable latency to pPADD.

Without pipelining and based on the point addition formula,
the core of aPADD is a mul that is half the size of the curve’s
word length. For a 377-bit width point, we only need a 189-bitmul,
which is about 1

3 the size of the modular multiplication unit used
in pPADD using the Karatsuba method.

4 EVALUATION
4.1 Methodology
In this section, we present the implementation results of Gypsophila
along with pertinent analysis. Gypsophila is implemented in Verilog
HDL, and this architecture is utilized to generate four sets of distinct
hardware for evaluation: PE-1 (single PE), PE-2 (dual PEs), PE-4 (4
PEs) and PE-16 (16 PEs). We set the bit-width of the index to 16 for
all versions except PE-16, where the index is 12-bit.

Targeting the MSM on the BLS12-377 curve, we synthesize PE-1
and PE-2 versions on FPGA using the Xilinx Vivado 2022.1 tools.
As part of our evaluation, we synthesize the PE-4 version on FPGA
targeting curves such as BN256, since there aren’t sufficient re-
sources on the FPGA to accommodate four 377-bit level MSM PEs.
Nonetheless, this provides a 256-bit security level and practical
applicability. The largest configuration, PE-16, designed for the
BLS12-377 curve, has been synthesized utilizing the TSMC 12nm
process. Resource/area reports and power consumption reports for
each of these implementations are presented in Table 1. In this
regard, the resource utilization for a single PE on FPGA (solely
responsible for the bucket classification) amounts to approximately
692k LUTs, 620k REGs, 3438 DSPs, 288 URAMs, and 684 BRAMs.
The largest version, PE-16, has an estimated area of approximately
79.80 mm2 on the TSMC 12nm process, according to the synthesis
report from Synopsys Design Compiler.

4.2 Performance Results
We provide a performance comparison of our work with other
custom designs in Table 2. The range of MSM degrees encompasses
typical application scenarios, spanning from 218 to 225. It’s worth
noting that apart from PipeZK, which is a 28nm ASIC designed
using the UMC process, all other works included in this comparison
are evaluated on Xilinx FPGAs at the 16nm level. The average

throughput of other works in the Table 2 are derived from our
analysis of the data provided in their respective papers.

In MSM with degrees ranging from 218 to 225, our design demon-
strates an average speedup of over two times compared to existing
works, whether measured in the number of clock cycles or time
consumption. At 221, the speedup relative to existing works reaches
3.63 times in time consumption and 5.06 times in the number of
clock cycles. With an average throughput of 1.71 GB/s, our single
PE surpasses that of other implementations. Although our oper-
ating frequency is limited to 200 MHz, it is essential to highlight
that Gypsophila is meticulously designed with ASIC as its primary
target platform. We have not pursued dedicated optimizations for
FPGA at this time. We believe that with further optimizations tai-
lored for FPGAs, Gypsophila can achieve lower resource overhead
and higher operating frequencies, leading to better PPA metrics.

We also conduct evaluations on PE-2, PE-4, and PE-16 versions.
The results highlight Gypsophila’s proficiency in parallelizing the
processing of multiple MSM tasks. This bandwidth-optimized archi-
tecture incurs onlymarginal speed loss. Table 3 shows the speed loss
and area reduction of three versions compared to the unoptimized
simple replicated MSM (PE-1) design. For fairness, this compari-
son is based on the number of clock cycles. The table shows the
speedup loss when performing multiple MSM tasks synchronously
in a pipelined fashion, compared to the time required for a single
MSM task. Since the primary computational load for MSM is con-
centrated in the bucket classification, the time for computing MSM
in the pipelined fashion aligns with the time required for the bucket
classification. Table 3 also shows that Gypsophila reduces the area
through resource sharing. With 16 PEs, it reduces the area by about
7.8% compared to the unoptimized architecture. It is evident that
Gypsophila’s scalable architecture, while conserving bandwidth,
enhancing throughput, and reusing points, has minimal impact on
performance. Even when performing calculations for MSM with
218 in PE-16, it results in a mere 1.01% maximum increase in time
consumption. However, its bandwidth requirements have almost re-
mained unchanged compared to a single MSM PE. In contrast to the
unoptimized use of 16 individual MSMs, its bandwidth is only 1/16
of the latter, yet it retains nearly identical computational capability
and throughput. We also observe that, in general, the lower the
degree of MSM, the more noticeable the speed loss becomes. This
is because more MSM stalls are caused by internal point conflicts,
especially bubbles in the pPADD pipeline. As the degree increases,
the absolute count of these bubbles also rises, and the impact of
point synchronization between multiple PEs becomes relatively
smaller. The speed loss from point synchronization is influenced by
the scalar arrangement order, leading to potentially varying values
in specific cases. However, overall, the speed loss is minimal and
follows statistical patterns.

5 CONCLUSION
In this paper, we present Gypsophila, a scalable and bandwidth-
optimized multi-scalar multiplication architecture. The MSM PE is
designed with a novel bucket method and Greedy-based scheduling.
Leveraging Buckets with fewer conflicts, the MSM PE achieves
higher data throughput than other works. Gypsophila, featuring
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Table 2: Performance Comparison of Single MSM PE with Other Works

Design Frequency # Clock Cycles/Time (ms) Throughput (Avg)
218 219 220 221 222 223 224 225

PipeMSM[16] 125MHz 8.6M
/68.8

17.1M
/136.6

34.1M
/273.0 - - - - - 421.6MB/s

CycloneMSM[1] 250MHz - - - - 204.5M
/817.9

283.3M
/1133

440.3
/1761

754M
/3016 1.34GB/s

Hardcaml[2] 278MHz - 138.7M
/499

150.1M
/540

172.4M
/620

216.8M
/780

304.1M
/1094 - - 578.0MB/s

PipeZK[17]1 300MHz
(28nm)

27.6M
/92

55.2M
/184

110.4M
/368 - - - - - 316.8MB/s

Ours 200MHz

4.8M
(1.80x)
/23.8

(2.89x)

9.0M
(1.90x)
/44.8

(3.05x)

17.4M
(1.96x)
/86.8

(3.15x)

34.1M
(5.06x)
/170.7
(3.63x)

67.7M
(3.02x)
/338.6
(2.30x)

134.9M
(2.10x)
/674.3
(1.62x)

269.2M
(1.64x)
/1346
(1.31x)

537.8M
(1.4x)
/2689
(1.12x)

1.71GB/s

1 The paper presents it as being based on the BLS12-381 protocol, and here, we consider that it exhibits only minor differences in data volume compared to BLS12-377,
allowing for an approximate comparison.

Table 3: Gypsophila’s Speedup Loss and Area Reduction.1

Degree Speedup Loss2 Area Reduction3
PE-2 PE-4 PE-16 PE-2 PE-4 PE-16

218 0.23% 0.51% 1.01%

4.3% 6.3% 7.8%

219 0.11% 0.20% 0.50%
220 0.05% 0.13% 0.32%
221 0.04% 0.08% 0.21%
222 0.02% 0.06% 0.16%
223 ≍0% ≍0% 0.07%
224 ≍0% 0.04% 0.11%
225 0.02% 0.04% 0.11%

1 Bit-width of the index is 12.
2 "≍0%" implies less than 0.01%.
3 The data is derived from four versions implemented in the TSMC 12nm
process, with PE-1 occupying an area of about 5.41 mm2 .

multiple MSM PEs, implements a streamlined data flow by optimiz-
ing the throughput of bucket classification, bucket aggregation, and
result aggregation within MSM. Resources sharing and data reuse
effectively alleviate the bandwidth pressure on data transmission
and enhance data throughput. Furthermore, Gypsophila provides
scalability and can be parameterized to meet specific application
requirements.
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