
1

A Fully Pipelined Reconfigurable Montgomery
Modular Multiplier Supporting Variable Bit-Widths

Hao Zhou, Changxu Liu, Lan Yang, Li Shang Member, IEEE, and Fan Yang Member, IEEE

Abstract—Recently, there has been increased emphasis on
privacy-preserving computation technologies such as homomor-
phic encryption (HE) and Zero-knowledge proof (ZKP). Modular
multiplication is a critical component for both HE and ZKP.
Variable bit-width is a must for many applications of privacy-
preserving computation, due to variable bit-width requirements
for different cryptography schemes. However, the majority of
modular multipliers that support variable bit-width configura-
tions exhibit relatively low throughput. This work presents a
fully pipelined Montgomery modular multiplier with variable bit-
width support. Truncated multipliers are introduced to reduce
the resources of modular multipliers in our approach. In order
to meet different bit-width requirements, the proposed modular
multiplier can be dynamically reconfigured. The proposed design
can support widely used bit-width configurations, specifically,
384-bit, 256-bit, and 128-bit. 256-bit and 128-bit modes support
parallel computation of 2 and 6 sets of operands, respectively.
Compared with existing variable bit-width modular multipliers,
the proposed reconfigurable modular multiplier significantly
improves the throughputs with even lower resources.

Index Terms—Montgomery modular multiplication, recon-
figurable, variable bit-width , parallel computation, privacy-
preserving computation

I. INTRODUCTION

IN recent years, Zero-knowledge proof (ZKP) has garnered
great attention due to the growing need for analyzing

sensitive blindly. ZKP has been deployed across diverse
landscapes [1]–[4], ranging from the electronic voting to
online auctions and smart contracts on blockchains. The data
processed by ZKP typically exhibit a large bit-width up to
several hundreds, requiring considerable resources. Neverthe-
less, the efficiency of privacy-preserving computations on
general-purpose computing processors like CPUs and GPUs
can not meet the requirements of various applications [5].
For instance, generating a Zero-Knowledge Succinct Non-
Interactive Argument of Knowledge (zk-SNARK) proof may
take a long time, potentially a few minutes even for a singular
payment transaction [6]. In contrast, accelerators for privacy-
preserving computing can greatly improve the efficiency.

In order to improve the efficiency of privacy-preserving
computing, hardware acceleration methodologies rooted in a
fully pipelined design have yielded commendable acceleration
outcomes [6]–[9]. As a foundational arithmetic unit of the

This research is supported partly by National Key R&D Program of China
2023YFB2704600, partly by National Natural Science Foundation of China
(NSFC) research projects 92373207 and 62090025. Hao Zhou, Changxu Liu,
Lan Yang and Fan Yang are with State Key Lab of Integrated Chips &
Systems, and School of Microelectronics, Fudan University, Shanghai, China.
Li Shang is with State Key Lab of Integrated Chips & Systems, and School
of Computer Science, Fudan University, Shanghai, China. Corresponding
Author: Fan Yang (yangfan@fudan.edu.cn).

hardware accelerators, modular multipliers exert a direct influ-
ence on the performances of accelerators [10]–[13]. Pipelined
modular multiplication can greatly improve the speed of
hardware accelerators.

The ability to support multiple bit-widths is also an impor-
tant issue that needs to be considered in modular multiplica-
tion. There are a variety of protocols and algorithms used in
privacy-preserving computing. The bit-width requirements of
modular multipliers for ZKP can vary greatly. In ZKP sys-
tems, Number-Theoretic Transform (NTT) and Multi-Scalar
Multiplication (MSM) on the most widely used elliptic curves
(ECs), such as BN-128, BLS12-381, and BLS12-377 [14],
need 256-bit and 384-bit modular multiplications. In previous
works, only single bit-width is supported by NTT or MSM
design. After fabrication, the designs cannot support other
protocols with different bit-width. Therefore, a reconfigurable
modular multiplication supporting multiple bit-widths can
greatly improve the flexibility of ASIC accelerators to support
various protocols or emerging more efficient algorithm after
fabrication.

Both pipelined and multiple bit-width supporting modular
multipliers have been explored in prior research.

A. Pipelined Modular Multipliers
Most pipelined modular multipliers are either based on

Barrett modular multiplication [15] or Montgomery modular
multiplication [16]. Barrett modular multiplication is similar
to commonly used modulo operation and also requires inte-
ger multiplication to find the quotient. Compared to Barrett
algorithm, the Montgomery algorithm needs transforms of
the operands between Montgomery forms and normal forms.
However, for a computing task, only the transforms from
the normal forms to Montgomery forms for the inputs, and
the transforms from the Montgomery forms to the normal
forms for outputs are needed. The computation cost of these
transforms is usually ignorable for complex tasks. If the
computational cost of these transforms is not ignorable, Bar-
rett algorithm can be used. The resource consumption for
implementation of Montgomery algorithm is lower than that
of Barrett algorithm [17]. The length of the critical path of
Montgomery algorithm is also shorter than Barrett algorithm
[17]. More importantly, for variable bit-width support, the
Montgomery algorithm and its improved version have more
flexibility than the Barrett algorithm. To the best of our
knowledge, the Barrett algorithm is not word-level-friendly
and cannot efficiently support variable bit-width.

In Barrett modular multiplication, part of the multiplications
only needs to calculate the upper half or the lower half bits

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3410847

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 02,2024 at 08:23:09 UTC from IEEE Xplore. Restrictions apply.

2

of results. Therefore, truncated multipliers are introduced in
pipelined Barrett modular multipliers to reduce the resources.
For instance, a fully pipelined modular multiplier based on
the Barrett and Shoup algorithm is presented in [18] for
homomorphic encryption. To reduce resources, unnecessary
DSPs and registers are removed from the lower and upper half
integer multipliers. In [7], [19], both the Most Significant Bit
multiplier (MSB-Mult) and the Least Significant Bit multiplier
(LSB-Mult) are integrated into the pipelined Barrett modular
multiplier. However, truncated multipliers in these Barrett
modular multipliers are inefficient when directly adapted to
the Montgomery algorithm.

The most popular Montgomery algorithms are the classical
Montgomery algorithm [16] and the word-based Montgomery
algorithm proposed by Tenca-Todorov-Koc in [20]. The for-
mer is most commonly used in fully pipelined Montgomery
modular multipliers. In [9], a fully pipelined Montgomery
modular multiplier tailored for MSM is realized. This modular
multiplier comprises two 384-bit full-scale integer multipliers
(FULL-Mults) and a custom multiplier based on non-adjacent
form (NAF) representation. The design in [21] implements
a fully pipelined Montgomery modular multiplier using the
KO-3 algorithm-based LSB-Mult. The LSB-Mult here is more
efficient than [7], [18], [19]. But it is also possible to apply
MSB-Mult in the Montgomery algorithm, which was ignored
in this work. More importantly, these works are limited to
supporting a single bit-width, restricting their versatility in
applications.

B. Modular Multipliers Supporting Variable Bit-Widths

Word-based Montgomery algorithms are all realized by
scanning input multiple times. The times of iterations de-
termine the bit-width supported by modular multiplier [20],
[22]–[24]. These iterations take several cycles to complete one
modular multiplication and result in remarkably low through-
put, adversely impacting both the pipeline and the throughput
of the upper-level modules. This poses a significant challenge,
particularly in applications like smart contracts on blockchains,
where generation speed and throughput are important [25].

C. Our contributions

In this paper, we introduce a fully pipelined Montgomery
modular multiplier supporting variable bit-widths. To optimize
the utilization of integer multipliers across multiple bit-widths,
we present an enhanced word-based modular multiplication
algorithm. This algorithm employs the Karatsuba-Ofman (KO)
algorithm, which minimizes the required integer multipliers
by fully utilizing all partial products in the initial phase. By
carefully analyzing the Montgomery algorithm, we design a
truncated multiplier to remove the unnecessary components in
Montgomery modular multiplier. Considering the commonly
used bit-widths (256-bit and 384-bit) in the ZKP system,
the bit-width of basic integer multipliers is set as 128-
bit to maximize resource utilization efficiency. Apart from
supporting 256-bit and 384-bit, our design also implements
128-bit modular multiplication due to almost no extra costs
needed. Moreover, several recent works, like private smart

contract ZeeStar [26], blockchain-based private transaction
scheme [27], and federated learning solutions [28]–[31], have
integrated both Homomoriphc Encryption (HE) and ZKP into
one system to improve the ability of private data protec-
tion. The 128-bit modular multiplication exactly meets the
requirement for HE [32], like the designs in RPU [33] and
CoFHEE [34]. There is great potential for our design to be
integrated into a reconfigurable accelerator supporting HE and
different ZKP protocols simultaneously. Our contributions can
be summarized as follows.

• We propose an enhanced word-based modular multiplica-
tion algorithm. This algorithm incorporates a suitable KO
algorithm to reduce the required integer multiplications.
Based on this algorithm, the utilization of multiplication
resources is 100% for all modes.

• We introduce truncated multipliers, including the LSB
multiplier and MSB multiplier, aimed at eliminating
calculations for the non-essential parts. For truncated
multipliers, we provide the mathematical proof. This is
the first time the MSB multiplier is introduced in the
word-based Montgomery modular multiplier.

• We design a fully pipelined Montgomery modular mul-
tiplier supporting variable bit-widths. The versatility of
this architecture allows for concurrent processing of 1-
way 384-bit, 2-way 256-bit, or 6-way 128-bit pipelined
modular multiplications in parallel. According to this
architecture, we can scale up it to implement modular
multipliers supporting larger bit-widths.

• We evaluate our reconfigurable fully pipelined modular
multiplier with TSMC 28 nm technology and FPGA plat-
form. Experimental results show that with TSMC 28nm
technology, our proposed Montgomery modular multi-
plier can achieve up to 7.0× improvement in efficiency
compared to the state-of-the-art designs. Compared to
software-based solutions, our design achieves 53×-100×
speedup. For FPGA platform, our proposed Montgomery
modular multiplier can achieve 4.8×, 8.5× improvements
in 128-bit and 256-bit modes, respectively, compared
to the state-of-the-art designs. For 384-bit mode, our
proposed Montgomery modular multiplier can achieve
significantly higher throughput. Though the efficiency
is slightly lower than the state-of-the-art design due to
resources introduced to support multiple bit-widths, it
exhibits more flexibility.

The remainder of this paper is organized as follows. In
Section II, the background is briefly reviewed. In Section III,
we introduce truncated multipliers to the modular multiplier
and propose an improved word-based modular multiplication
algorithm. In Section IV, we present our fully pipelined
modular multiplier capable of handling multiple bit-widths.
In Section V, we evaluate our design and compare it with
previous works. In Section VI, we conclude the paper.

II. BACKGROUND

A. Montgomery Modular Multiplication

Montgomery modular multiplication is a widely used al-
gorithm in modular arithmetic. The traditional modular mul-

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3410847

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 02,2024 at 08:23:09 UTC from IEEE Xplore. Restrictions apply.

3

Algorithm 1 Montgomery Modular Multiplication [16]

Preprocess: M
′
= −M−1mod R

Input: X, Ȳ ∈[0, M), R= 2n > M , gcd(R,M) = 1
Output: Z = XȲ R−1 mod M ∈ [0,M)

1: Z = XȲ
2: Qm = (Z mod R)M

′
mod R

3: Z = (Z +QmM)/R
4: if Z ≥ M then
5: Z = Z −M

return Z

tiplication algorithm requires division, which is implemented
by multiple multiplications in hardware. In privacy-preserving
computing scenarios, the bit-widths can vary from hundreds
to thousands. The Montgomery algorithm [16] streamlines the
modular multiplication by replacing the division with a more
efficient shifting operation, reducing resource consumption
and enhancing the efficiency. Algorithm 1 outlines the Mont-
gomery modular multiplication procedure, where modular M
is a prime number, n is the smallest positive integer ensuring
coprimality between R = 2n and M (i.e., gcd(R,M) = 1),
M ′ represents the modular inverse of M with respect to the
modular R. The multiplier Y undergoes conversion to the
Montgomery form Ȳ during preprocessing via Equation 1.

Ȳ = Y R mod M. (1)

In Algorithm 1, Y is converted to the Montgomery form,
and thus XY mod M is transformed to XȲ R−1 mod M .
The Montgomery algorithm transforms divisions into shift
operations. However, a direct right shift of XȲ by n bits may
lead to the loss of the lower n bits, resulting in a precision
loss. To avoid this, a suitable Qm is generated in Step 2 of
Algorithm 1 to ensure the lower n bits of Z + QmM are
precisely zero. After right shift n bits of Z+QmM , the result
of Step 3 meets Equation 2.{

XȲ < M2, Qm < R,M < R
XȲ+QmM

R < M2+RM
R < RM+RM

R = 2M.
(2)

The final result is obtained after Step 4 and Step 5.

B. Scalable Montgomery Modular Multiplication

The Montgomery algorithm has indeed elevated the com-
putational efficiency of large integer modular multiplications.
However, both the algorithm and its corresponding hardware
implementations face limitations in the bit-widths of operands
and the flexibility. Based on the Montgomery algorithm,
Tenca-Todorov-Koc introduced a word-based algorithm with
scalable bit-width operations, as shown in Algorithm 2 [20].
This word-based approach not only conserves resources but
also significantly enhances the efficiency. In Algorithm 2, the
outer loop divides X into multiple k-bit words, sequentially
multiplying them by the words of Y in each iteration. During
the i-th iteration, the i-th word of X undergoes multiplication
with the first word (Y0) of Y and is added to the first word
(Z0) of the preceding iteration’s result (Z). In Step 4, Qmi is

obtained in a way similar to Algorithm 1. After this Step, the
result Qmi ensures that the lower k bits of (Z0+QmiM0) are
zero. In the inner loop (from Step 6 to Step 9 of Algorithm
2), s iterations are employed to scan both Y and M with
k-bit Step. The subsequent outer loop proceeds to scan the
next word of X following a right shift of k bits. This process
continues, sequentially scanning the words of X and Y until
the end of the algorithm.

It’s worth noting that Algorithm 2 demands s2 iterations.
For operands with large bit-width, the required number of
iterations could be significantly large, significantly impacting
the algorithm’s overall efficiency. A fully pipelined modular
multiplier supporting multiple bit-width is possible to address
this issue.

Algorithm 2 Scalable Montgomery Modular Multiplication
[20]

Preprocess: M
′
= -M−1 mod R, s =

⌈
n
k

⌉
Input: X,Y ∈[0,M), R = 2n > M , gcd(R,M) = 1
Output: Z = XY R−1 mod M ∈[0,M)
1: Z = 0
2: for i=0 to n-1 step k do ▷ Outer loop
3: (Ca, Z0) = Z0 + X[i]Y0

4: Qmi = (Z0 mod 2k)M ′ mod 2k

5: (Cb, Z0) = Z0 + QmiM0

6: for j=1 to s-1 do ▷ Inner loop
7: (Ca, Zj) = Ca + Zj + X[i]Yj

8: (Cb, Zj) = Cb + Zj + QmiMj

9: Zj−1 = Concatenate(Zj[k-1:0], Zj−1[2k-1:k])
10: Ca = Ca or Cb

11: Zs−1 = sign ext(Ca, Zs−1[2k-1:k])
12: if Z ≥ M then
13: Z = Z −M

return Z

C. KO Algorithm for Large Integer Multiplication

Karatsuba-Ofman algorithm (KO algorithm) is a well-
known algorithm for large integer multiplication. The algo-
rithm is based on the divide-and-conquer approach and splits
the n-bit multiplicand and the multiplier into two smaller
terms. {

X = x1 ∗ 2n/2 + x0

Y = y1 ∗ 2n/2 + y0.
(3)

The product of X ∗ Y is denoted as:

Z = X ∗ Y
= x1y1 ∗ 2n + (x1y0 + x0y1) ∗ 2n/2 + x0y0.

(4)

According to KO algorithm, x1y0 + x0y1 is capable of being
replaced by:

x1y0 + x0y1 = (x0 + x1) ∗ (y0 + y1)− x0y0 − x1y1. (5)

Denote p0, p1 and p01 the partial products x0y0, x1y1 and
(x0+x1)∗(y0+y1), respectively, Equation 4 can be rewritten
as:

Z = p1 ∗ 2n + (p01 − p0 − p1) ∗ 2n/2 + p0

= Z2 ∗ 2n + Z1 ∗ 2n/2 + Z0.
(6)

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3410847

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 02,2024 at 08:23:09 UTC from IEEE Xplore. Restrictions apply.

4

The KO algorithm can significantly reduce the number of
multiplications necessary for large integer multiplication. No-
tably, it trims down the requirement from 4 multiplications in
the schoolbook multiplication algorithm to 3 multiplications.
This streamlined approach not only directly enhances the
computational efficiency but also has the potential to reduce
the hardware consumption, particularly when dealing with
operands with large bit-widths.

III. IMPROVED MODULAR MULTIPLICATION ALGORITHM

In this section, we propose an enhanced word-based Mont-
gomery modular multiplication that employs the KO (or KO-
3) algorithm to compute all partial products of inputs be-
fore Montgomery reduction. This approach reduces resource
consumption and better accommodates reconfigurable modular
multipliers. Additionally, as shown in Fig. 1a, multiplications
employed in Steps 3 to 5 of Algorithm 2 are all full-scale
multiplications (FULL-Mult) that perform calculations com-
pletely. However, according to the Montgomery algorithm,
Qmi only needs to take the low half of the multiplication
result (FULL-Mult2), while bits in the low half of Z0 +
FULL-Mult3(Qmi,M0) are all 0 and will be discarded in
subsequent steps. Therefore, partial resources in FULL-Mult2
and FULL-Mult3 are unnecessary.

For computing the partial multiplication results, we in-
troduce two truncated multiplications: MSB multiplication
(MSB-Mult) and LSB multiplication [21] (LSB-Mult). In
MSB-Mult, only the higher partial product is computed. In
LSB-Mult, the calculation for the higher partial product is
omitted. The improved version is shown in Fig. 1b. Unlike
previous MSB-Mult approaches [9], [19], which introduce
larger errors, our proposed MSB-Mult incurs an error of only
1, making it more compatible with word-based Montgomery
modular multiplication.

FULL

Mult1

FULL

Mult2

FULL

Mult3

Shift register

++
X0

Y0

Z0

Z0

M'[k-1:0]

Qmi

M0

Z0

Product
>>k

SumFULL

Mult1

FULL

Mult2

FULL

Mult3

Shift register

+
X0

Y0

Z0

Z0

M'[k-1:0]

Qmi

M0

Z0

Product
>>k

Sum

(a) Partial multiplications in Algorithm 2

FULL

Mult1

LSB

Mult

MSB

Mult

Shift register

++
X0

Y0

Z0

Z0

M'[k-1:0]

Qmi

M0

Z0

Product
>>k

SumFULL

Mult1

LSB

Mult

MSB

Mult

Shift register

+
X0

Y0

Z0

Z0

M'[k-1:0]

Qmi

M0

Z0

Product
>>k

Sum

(b) Improved version introducing truncated multiplications

Fig. 1: Multiplications in Algorithm 2 and its improved version

A. Word-based Modular Multiplication with KO Algorithm

In Algorithm 2, partial products like X[i]Y0 (or X[i]Yj) are
computed in each loop during Step 3 (or Step 7). In scenarios
where inputs are divided into s words, s2 multipliers are
needed for calculating these partial products. However, when

applied to a reconfigurable modular multiplier, this approach
is not efficient. By leveraging the KO (or KO-3) algorithm
to compute all partial products of inputs before Montgomery
reduction, we can significantly reduce the number of required
multipliers. In comparison to Algorithm 2, Algorithm 3 man-
ages to save 1 or 3 large integer multiplications, each with a
bit-width of up to 128 in our design.

B. MSB Multiplication

In the Montgomery algorithm, the lower segments of
Z + QmM (Algorithm 1) and Z0 + QmiM0 (Algorithm
2) are all zero, which can be eliminated directly through
shifting operations. When only the higher part of the product
and addition are calculated, the resources employed by the
multiplier and adder, as well as the latency induced by the
carry chain, would inevitably decrease. In contrast to the LSB-
Mult, the computation for the lower part cannot be directly
discarded here. Doing so might introduce substantial errors
due to the absence of carry from the lower part. Hence, we
introduce MSB-Mult, which omits the calculation for the lower
part, with a predictable error.

Similar truncated multipliers have been introduced in prior
works for Barrett modular multiplication [7], [19]. The errors
introduced by truncated multipliers employed in these works
will be up to 5. As a result, the error in the final result is only
a few times the modulus, which is easy to compensate for the
Barrett modular multiplication. However, this approach is not
well-suited for word-based Montgomery algorithms in which
compensating only work under error being 1.

In the context of word-based Montgomery modular multipli-
cation, errors introduced by MSB-Mult necessitate immediate
compensation before initiating the next reduction to prevent
error propagation. However, it is impossible to correct unpre-
dictable errors in this step. Predictable error is thus necessary.
Moreover, in addition to not being completely suitable for the
Montgomery algorithm, the approach in [19] is inefficient due
to taking more resources when introducing greater error. In
[7], the details regarding bit-width allocation and proof are
not provided.

We present our MSB-Mult as follows. We use a strategy
similar to the divide-and-conquer approach. Each recursive
level of MSB multiplication is divided into two segments, as
shown in Equation 3. The computation of each level is shown
in Equation 4 which omits x0y0, while x1y1 is still calculated
in the KO algorithm. Subsequently, x1y0 and x0y1 are also
partitioned and computed in the subsequent recursive level.
However, the difference from the traditional methods is that
the word length of x0 (or y0) is not k/2, but as shown in
Theorem 1.

Theorem 1. If the allocation scheme of each level in MSB-
Mult meets Equation 7

Rl =

{
k/2− 1 if l = 1⌊
R1/2

l−1
⌋

if 1 < l ⩽ L,
(7)

where Rl is the word length of x0 (or y0) in l-th recursive
level of MSB-Mult, k is the width of MSB-Mult input and h is

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3410847

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 02,2024 at 08:23:09 UTC from IEEE Xplore. Restrictions apply.

5

an integer satisfying k = 2L(h+1), L is the selected number
of recursive levels of MSB-Mult and L ∈ {1, 2, 3, 4}, then we
have

⌊µ⌋ − ⌊µ̃⌋ = 1,

where µ = (Z0 + QmiM0)/2
k is the result without error,

µ̃ = [
⌊
Z0/2

k−c
⌋
+ MSB-Mult(Qmi,M0)]/2

c is the result
with error introduced by MSB-Mult and discarded part in Z0.
Here, the value c is the width of word reserved in lower half
part of Z0, and c = h + 1. The value k − c represents the
width of the discarded part in Z0.

Proof. Please find the proof of Theorem 1 in appendix.

Therefore, once we have calculated (Z0 + QmiM0)/2
k

approximately by MSB-Mult, we only need to correct the error
of the result by adding 1.

An illustrative example with k = 128 and L = 3 is depicted
in Fig. 2. The implementation of MSB-Mult is structured into
three levels, with R1 = 63, R2 = 31, and R3 = 15. Within
Fig. 2, the regions shaded in gray mean that this particular
section of the result is computed using the KO algorithm.
Conversely, the areas highlighted in green indicate that the
calculation of the result adheres to Equation 4, excluding the
x0 ∗ y0 term at each hierarchical level. Although we illustrate
a 3-level structure as an example, it’s worth noting that for
larger bit-width scenarios, a similar multi-level structure can
also be obtained.

128

65 63*6563*65

3432 33

16 17 16 17 18 16

31*3232 31*32

16 17 16 17*16 16*15 17*15

128

65 63*6563*65

3432 33

16 17 16 17 18 16

31*3232 31*32

16 17 16 17*16 16*15 17*15

Fig. 2: The MSB multiplier.

C. LSB Multiplication

As depicted in Step 1 of Algorithm 1 and Step 4 of
Algorithm 2, the higher partial product of (Z0 mod 2k)M

′

has no influence on the result. Hence, one proposition is to
omit the calculation of this part and exclusively compute the
product of the lower part. However, Equation 6 reveals that
no multipliers are spared in the truncated multiplier based
on the KO algorithm. Similar to the full-scale multiplier, the
computations for p0, p1, and p01 are necessary. However, the
KO-3 algorithm, which decomposes X and Y into three terms,
as expressed in Equation 8, has the capability to reduce the
multiplications in LSB-Mult [21], [35].{

X = x2 ∗ 22k/3 + x1 ∗ 2k/3 + x0

Y = x2 ∗ 22k/3 + y1 ∗ 2k/3 + y0.
(8)

Based on Equation 8, X ∗ Y is expressed as

Z =X ∗ Y
=x2y2 ∗ 24k/3+
(x1y2 + x2y1) ∗ 23k/3+
(x0y2 + x2y0 + x1y1) ∗ 22k/3+
(x1y0 + x0y1) ∗ 2k/3 + x0y0.

(9)

If x0y0, x1y1, x2y2, (x0+x1)∗(y0+y1), (x0+x2)∗(y0+y2)
and (x1 + x2) ∗ (y1 + y2) are represented as p0, p1, p2, p01,
p02 and p12 respectively, Equation 9 can be rewritten as

Z =X ∗ Y
=p2 ∗ 24k/3+
(p12 − p1 − p2) ∗ 23k/3+
(p02 − p0 − p2 + p1) ∗ 22k/3+
(p01 − p0 − p1) ∗ 2k/3 + p0

=Z4 ∗ 24k/3 + Z3 ∗ 23k/3+
Z2 ∗ 22k/3 + Z1 ∗ 2k/3 + Z0.

(10)

In Equation 10, only the calculation for 5 partial products,
namely p0, p1, p2, p01, and p02, in the lower part of LSB-
Mult is necessary, with the computation for p12 being omitted.
Compared to the utilization of the KO algorithm, LSB-Mult
using the KO-3 algorithm exhibits superior performance.

D. Improved Modular Multiplication Algorithm

Combining LSB-Mult and MSB-Mult, we propose a im-
proved word-based Montgomery multiplication as follows.

Algorithm 3 Improved modular multiplication algorithm

Preprocess: M
′
= -M−1 mod R, s=

⌈
n
k

⌉
Input: X,Y ∈[0,M), R = 2n > M , gcd(R,M) = 1
Output: Z = XY R−1 mod M ∈[0,M)
1: Z = 0
2: {Z0, Z1, ..., Z2s−2} = KO (or KO3) algorithm(X,Y)
3: for i=0 to s-1 do ▷ Outer loop
4: Qmi = LSB-Mult(Z0 mod 2k, M ′)
5: Z0 =

⌊
Z0/2

k−c
⌋

+ MSB-Mult(Qmi,M0)
6: sumi/0 = ⌊Z0/2

c⌋ + 1
7: for j=1 to s− 1 do ▷ Inner loop
8: sumi/j = Zj + QmiMj

9: Z0 = sumi/0 + sumi/1

10: for l=1 to 2s− 3− i do
11: if 1 ⩽ l < s− 1 then
12: Zl = sumi/l+1

13: else if s− 1 ⩽ l ⩽ 2s− 3− i then
14: Zl = Zl+1

15: Z = Zs−2 ∗ 2k(s−2) + ... + Z1 ∗ 2k + Z0

16: if Z ≥ M then
17: Z = Z −M

return Z

In Algorithm 3, the calculation of all partial products p
leverages the KO (or KO-3) algorithm before Montgomery
reduction. When s exceeds 1, the number of multiplications

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3410847

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 02,2024 at 08:23:09 UTC from IEEE Xplore. Restrictions apply.

6

required for X ∗ Y falls below s2 [35]. Subsequent steps
performing Montgomery reduction on Z0, Z1, ..., Z2s−2 can
reuse the outputs of the KO algorithm. Each outer loop iterates
through the lower k bits of the lower order coefficients (Z0)
sequentially to obtain Qmi as described in Step 4 of the
algorithm. Notably, this step discards the higher k bits of the
product. To optimize resource utilization, LSB-Mult replaces
FULL-Mult in this context.

Similar to Algorithms 1 and 2, the lower k bits of Z0 +
Qmi ∗ M0 are always zero. This enables the introduction
of MSB-Mult for calculating Qmi ∗ M0, followed by error
correction. Meanwhile, Qmi ∗ Mj (j > 0) is calculated and
added to coefficients Zj to update sumi/j . Subsequently, Zl

is updated and the algorithm proceeds to the next outer loop
for further reduction. After s iterations of the outer loop, Step
15 calculates the weighted sum of s−1 coefficients. Detecting
the sign bit in the difference between the sum and the modular
value yields the final result.

IV. PROPOSED RECONFIGURABLE MODULAR MULTIPLIER

In this section, we will present our proposed reconfigurable
modular multiplier.

A. Overview of the Architecture

The general structure of the fully pipelined multiplier imple-
menting Algorithm 3 is shown in Fig. 3. While the input bit-
width n varies in different modes, the radix k remains constant
at 128. The design adapts resource allocation based on the
chosen bit-width mode, leveraging Algorithm 3 and Fig. 3
to fulfill computational requirements. Blue arrows denote the
utilization of only lower k bits, whereas brown arrows indicate
discarded data below (k − c)-th bit. Corrections word with c
bits are discarded after Step5 of Algorithm 3, as depicted by
red arrows in Fig. 3.

Taking advantage of the word-based algorithm, we can
devise a computational array comprising several k-bit mul-
tipliers, adders, and shift registers, as illustrated in Fig. 4.
In this work, the computational array includes 9 k-bit and
3 (k+1)-bit full-scale multipliers (FULL-Mult), 3 k-bit LSB-
Mults, 3 k-bit MSB-Mults, 9 shift register arrays, and several
adders to accommodate 384-bit, 256-bit, and 128-bit modular
multiplications. The region (a) incorporates three k-bit and
three (k+1)-bit FULL-Mults, responsible solely for computing
partial products p. In 384-bit mode, the KO-3 algorithm is
employed, while in 256-bit mode, the KO algorithm is utilized.
Consequently, the multipliers required for 2-way 256-bit inputs
in Step 2 of Algorithm 3 precisely meet those for 1-way 384-
bit and 6-way 128-bit inputs.

The k-bit LSB-Mults in the region (b) are used to calculate
Qmi. The k-bit MSB-Mults in the region (c) are used to
calculate Qmi ∗ M0. The remaining k-bit FULL-Mults in
region (d) are utilized for calculating either Qmi or Qmi ∗Mj

depending on the selected mode. According to Algorithm 3,
s2+s multipliers are required for the reduction step. Therefore,
12 multipliers present in these three regions can fulfill the re-
quirements for 1-way 384-bit. Based on the chosen bit-width,
these resources can be reassembled, following Algorithm 3

KO or KO-3 Algorithm

Mult

Mult

x0

++

y0x1 y1

… …

Mult Mult…

Z0 Z1 Zs-1

xs-1 ys-1

M'0

Mult

…

Qm0M0

Mult

M1

Mult

Ms-1

… Z2s-2

++

…

++

Mult

M'0 ++

Zs

Mult

M0

Mult

M1

Mult

Ms-1

…

++ ++

sum0/0
sum0/1

sum0/s-1

sum0/2
++

++

sum1/0 sum1/1

...

sum1/s-1

...

In
n

er
 l

o
o

p
 0

In
n

er
 l

o
o

p
 1

In
n

er
 l

o
o

p
 s

-1

In
n

er
 l

o
o

p
 0

In
n

er
 l

o
o

p
 1

In
n

er
 l

o
o

p
 s

-1

O
u

te
r

lo
o

p
 0

O
u

te
r

lo
o

p
 1

…
…

1'b1

1'b1

KO or KO-3 Algorithm

Mult

Mult

x0

+

y0x1 y1

… …

Mult Mult…

Z0 Z1 Zs-1

xs-1 ys-1

M'0

Mult

…

Qm0M0

Mult

M1

Mult

Ms-1

… Z2s-2

+

…

+

Mult

M'0 +

Zs

Mult

M0

Mult

M1

Mult

Ms-1

…

+ +

sum0/0
sum0/1

sum0/s-1

sum0/2
+

+

sum1/0 sum1/1

...

sum1/s-1

...

In
n

er
 l

o
o

p
 0

In
n

er
 l

o
o

p
 1

In
n

er
 l

o
o

p
 s

-1

In
n

er
 l

o
o

p
 0

In
n

er
 l

o
o

p
 1

In
n

er
 l

o
o

p
 s

-1

O
u

te
r

lo
o

p
 0

O
u

te
r

lo
o

p
 1

…
…

1'b1

1'b1

Fig. 3: The pipelined data flow of Algorithm 3.

Legend

Multiplier

FULL-Mult(F1)

128-bit

FULL-Mult(F2)

129-bit

MSB-Mult(M)

128-bit

LSB-Mult(L)

128-bit

Adders

Shift register

array

Connection Network

(b)

L#0

L#1

L#2

(c)

M#0

M#1

M#2

(d)

F1#3

F1#4

F1#5

F1#6

F1#7

F1#8

(a)
F1#0 F1#1 F1#2

F2#0 F2#1 F2#2

Legend

Multiplier

FULL-Mult(F1)

128-bit

FULL-Mult(F2)

129-bit

MSB-Mult(M)

128-bit

LSB-Mult(L)

128-bit

Adders

Shift register

array

Connection Network

(b)

L#0

L#1

L#2

(c)

M#0

M#1

M#2

(d)

F1#3

F1#4

F1#5

F1#6

F1#7

F1#8

(a)
F1#0 F1#1 F1#2

F2#0 F2#1 F2#2

Fig. 4: The overall architecture of proposed modualr multiplier.
The 128-bit and 129-bit FULL-Mult are denoted by F1 and
F2, respectively. M and L denote MSB-Mult and LSB-Mult,
respectively.

and Fig. 3, in a pipelined manner through the reconfigurable
connections.

In 256-bit and 128-bit modes, the available multiplier re-
sources are not only sufficient for one modular multiplica-
tion pipeline. Utilizing the reconfigurable connections, the
remaining multipliers are used to construct more modular
multiplication pipelines, enabling these pipelines to operate
in parallel. In these modes, s is either 2 or 1, respectively.
These 12 multipliers also precisely meet 2-way 256-bit (needs
2 ∗ (22+2) multipliers) and 6-way 128-bit (needs 6 ∗ (12+1)
multipliers) calculations. Therefore, the utilization of multipli-
cation resources is 100% for all modes.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3410847

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 02,2024 at 08:23:09 UTC from IEEE Xplore. Restrictions apply.

7

B. Reconfigurable Pipelined Modular Multiplier in Different
Modes

According to configuration, resources in Fig. 4 are orga-
nized as shown in Fig. 3.

KO-3

F1#0 F1#1 F1#2 F2#0 F2#1 F2#2

F1#3

F1#4

F1#5

F1#6

F1#7

F1#8

M#0

M#1

M#2

L#0

L#1

L#2

x0 y0 x1 y1 x2 y2 x0+x1 y0+y1 x0+x2 y0+y2 x1+x2 y1+y2

p0 p1 p2 p01 p02 p12

Z0 Z1 Z2 Z3 Z4

Outer loop 1

Outer loop 2

Outer loop 3

Inner loop 1 Inner loop 2 Inner loop 3

sum3/0 sum3/1 sum3/2

<<128>>16

++ --

Res

0
1

0
1

1'b1

KO-3

F1#0 F1#1 F1#2 F2#0 F2#1 F2#2

F1#3

F1#4

F1#5

F1#6

F1#7

F1#8

M#0

M#1

M#2

L#0

L#1

L#2

x0 y0 x1 y1 x2 y2 x0+x1 y0+y1 x0+x2 y0+y2 x1+x2 y1+y2

p0 p1 p2 p01 p02 p12

Z0 Z1 Z2 Z3 Z4

Outer loop 1

Outer loop 2

Outer loop 3

Inner loop 1 Inner loop 2 Inner loop 3

sum3/0 sum3/1 sum3/2

<<128>>16

+ -

Res

0
1

1'b1

Fig. 5: The resource allocation and data flow for 384-bit mode.
The 128-bit and 129-bit FULL-Mult are denoted by F1 and
F2, respectively. M and L denote MSB-Mult and LSB-Mult,
respectively.

384-bit mode: Fig. 5 illustrates the data flow of the modular
multiplier in 384-bit mode. The KO-3 algorithm is employed
to compute the product X ∗ Y , utilizing six FULL-Mults
located in region (a) of Fig. 4. Three 128-bit FULL-Mults
are dedicated to calculating p0, p1 and p2, respectively, while
three 129-bit FULL-Mults handle the calculations for p01, p02
and p12. Following the addition and subtraction operations,
Z0, Z1, ..., Z4 are forwarded to the next pipeline stage. The
lower portion of Z0 is fed to LSB-Mult0, while the higher
portion, encompassing the higher 128 bits and correction bits,
is fed to shift registers for the calculation of Z0 + QmiM0.
The circuit implementation details for each inner and outer
loop are presented in Fig. 3. After three inner loops and three
outer loops, the corrected sum is subtracted from the modular
value, and the final result is chosen based on the sign bit.

256-bit mode: Due to the reduced number of multipliers
required for both inner and outer loops in 256-bit mode, the
remaining multipliers, as shown in Fig. 6, are reassigned and
reassembled to handle the modular multiplication of another
set of operands. Notably, to minimize area and latency by
reducing multiplexer usage, we prioritize minimal changes to
the data path compared to the 384-bit mode. For instance,
only the inputs to FULL-Mult #1 and FULL-Mult #2 are
changed. Similarly, only the inputs to 129-bit FULL-Mult
#1/#2 are replaced, while LSB-Mult #0/#1, MSB-Mult #0/#1,
and 128-bit FULL-Mult #6/#7, responsible for the first set of
data’s modular multiplication, remain unchanged. The detailed
circuit implementation for each inner and outer loop remains
similar to that presented in Fig. 3.

128-bit mode: In 128-bit mode, only three multipliers are
required for a single modular multiplication. All the multipliers
shown in Fig. 4 are precisely sufficient for the modular

KO

F1#0 F1#1 F1#2F2#0 F2#1 F2#2

F1#3

F1#4 F1#5

F1#6

F1#7

F1#8M#0

M#1

M#2

L#0

L#1

L#2

x0 y0 x1 y1 x2 y2x0+x1 y0+y1 x3 y3 x2+x3 y2+y3

p00 p01 p10p001 p11 p101

Z00 Z01 Z02

Outer

loop 0

Outer

loop 1

Inner loop 0 Inner loop 1

>>16

++

--
Res0

0
1

0
1

Z10 Z11 Z12

Inner loop 0 Inner loop 1

>>128

++

--
Res1

0
1

0
1

1'b1

KO

F1#0 F1#1 F1#2F2#0 F2#1 F2#2

F1#3

F1#4 F1#5

F1#6

F1#7

F1#8M#0

M#1

M#2

L#0

L#1

L#2

x0 y0 x1 y1 x2 y2x0+x1 y0+y1 x3 y3 x2+x3 y2+y3

p00 p01 p10p001 p11 p101

Z00 Z01 Z02

Outer

loop 0

Outer

loop 1

Inner loop 0 Inner loop 1

>>16

+

-
Res0

0
1

Z10 Z11 Z12

Inner loop 0 Inner loop 1

>>128

+

-
Res1

0
1

1'b1

Fig. 6: The resource allocation and data flow for 256-bit mode.
The 128-bit and 129-bit FULL-Mult are denoted by F1 and
F2, respectively. M and L denote MSB-Mult and LSB-Mult,
respectively.

multiplication of six sets of operands simultaneously as shown
in Fig. 7.

F1#0 F1#1 F1#2 F2#0 F2#1 F2#2

F1#3F1#4F1#5

F1#6 F1#7 F1#8

M#0 M#1 M#2

L#0 L#1 L#2

x0 y0 x1 y1 x2 y2 x4 y4 x3 y3 x5 y5

Z00 Z10

Outer

loop 0

>>16

--

Res0

0 10 1

Z20 Z30 Z40 Z50

>>16 >>16 >>128 >>128 >>128

--

Res5

0 10 1

……

++ 1'b1

F1#0 F1#1 F1#2 F2#0 F2#1 F2#2

F1#3F1#4F1#5

F1#6 F1#7 F1#8

M#0 M#1 M#2

L#0 L#1 L#2

x0 y0 x1 y1 x2 y2 x4 y4 x3 y3 x5 y5

Z00 Z10

Outer

loop 0

>>16

-

Res0

0 1

Z20 Z30 Z40 Z50

>>16 >>16 >>128 >>128 >>128

-

Res5

0 1

……

+ 1'b1

Fig. 7: The resource allocation and data flow for 128-bit mode.
The 128-bit and 129-bit FULL-Mult are denoted by F1 and
F2, respectively. M and L denote MSB-Mult and LSB-Mult,
respectively.

V. EVALUATION

This section presents an implementation of a reconfigurable
modular multiplier tailored for the ASIC platform. To under-
score the efficacy of our truncated multipliers, we further show
the comparison between FULL-Mult and truncated multipliers.
Leveraging the Synopsys Design Compiler, we implement and
synthesize these works with a TSMC 28 nm technology.

As prior fully pipelined architectures primarily being imple-
mented on FPGA platforms, we also replicate and evaluate our
design on the same platform for a fair comparison. However,
it should be noted that the reconfigurability inherent in our
approach showcase greater advantages in ASIC platforms. We
implement two reconfigurable NTT pipelines with multiple
bit-widths support to benchmark the performance of our de-
sign. NTT is one of the computations needed to be accelerated
in ZKP and HE.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3410847

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 02,2024 at 08:23:09 UTC from IEEE Xplore. Restrictions apply.

8

A. Evaluation of Truncated Multipliers

We implement and compare 128-bit FULL-Mult and trun-
cated multipliers used in our reconfigurable pipelined modular
multiplier to show the enhancement of truncated multipli-
ers. To obviously show the enhancement of our truncated
multipliers compared with previous work, we also conduct a
comparison with the truncated multipliers in Barrett modular
multiplier proposed in [19]. However, due to the unavailability
of the Quartus Prime Pro Edition software and the Intel
Stratix10 FPGA, we replicate the methodology employed in
the aforementioned work with the 28nm technology. There-
fore, we also implement 1024-bit FULL-Mult and truncated
multipliers based on Section III with the 28nm technology.

TABLE I: Comparison between truncated multipliers and
FULL-Mults

Design Ours† [19]†

Bit-Width 128 1024 1024

Area

(103um2)

FULL-Mult 28.9 1519.6 1519.6

LSB-Mult‡ 21.5(25%) 1102.5(27%) 1475.8(3%)

MSB-Mult‡ 22.8(21%) 1263.0(16.8%) 1266.6(16.6%)

Power

(mW)

FULL-Mult 25.47 1962.7 1962.7

LSB-Mult‡ 15.53(39.0%) 1531.6(22%) 1899.3(3.2%)

MSB-Mult‡ 16.59(34.9%) 1673.7(14.7%) 1677.2(14.5%)
† The 128-bit multipliers are synthesized based on TSMC 28 nm library

with 1000MHz clock, while 1024-bit multipliers with 800MHz.
‡ Data in parentheses show the area and power improvements of truncated

multipliers compared to FULL-Mult.

We synthesize these works under 800MHz and 1000MHz
clock frequency. The corresponding results and enhancement
of FULL-Mults and truncated multipliers with 128-bit and
1024-bit are shown in Table I.

In our 128-bit multipliers, FULL-Mult is implemented using
the KO algorithm with recursive 3 levels. While LSB-Mult
and MSB-Mult are all implemented as described in Section
III. Compared to the FULL-Mult, the LSB-Mult saves area
by 25%, while the MSB-Mult saves area by 21%. More
appreciably, the LSB-Mult and MSB-Mult achieve 39.0% and
34.9% reductions in power consumption compared to FULL-
Mult.

Our 1024-bit FULL-Mult is implemented using the KO
algorithm with recursive 5 levels. While our 1024-bit LSB
multiplier utilizes the KO-4 algorithm (KO algorithm by-4
decomposition) [35], eliminating two 256-bit multipliers. The
MSB-Mult is implemented with a recursive 5-level structure
similar to that described in III-B. Our LSB-Mult achieves 27%
area reduction compared to FULL-Mults and 25% reduction
compared to [19]. The MSB multiplier exhibits a 16.8% area
reduction compared to FULL-Mult. Our design exhibits a sim-
ilar area reduction compared to [19], while [19] discards more
information and introduces larger errors up to 5. However, only
an error of 1 is introduced into our design.

For power consumption, our LSB-Mult and MSB-Mult
realize 22% and 14.7% reductions compared to FULL-Mult,
respectively. The enhancement of these two truncated mul-

tipliers to [19] is similar to that in area. Our LSB-Mult
achieves 19.4% reduction compared to [19], while the power
consumption results of two MSB-Mults are similar. The total
areas of the two modular multiplication designs amount to
3897.6 103um2 and 4279.7 103um2, respectively. Our work,
therefore, realizes a 9% area reduction compared to [19].

B. Evaluation of Reconfigurable Pipelined Modular Multiplier
with ASIC Technology

The performance of the modular multiplier is evaluated
through various metrics, including frequency (MHz), area
(103um2), power (mW), cycles, throughput (Gbps) and effi-
ciency (Gbps/103um2). The cycles metric denotes the number
of cycles for one modular multiplication. The efficiency is
defined as follows

Efficiency =
Throughput

Area
. (11)

Design in [36] employs carry-save adders inside the iteration
without carry propagation, realizing an extremely short critical
path. When processing 128-bit and 256-bit modular multipli-
cation, this design can work under 1886MHz and 1785MHz.
However, it needs multiple iterations even in pipelined version.
The number of cycles needed to complete one modular multi-
plication is 18. This has a very negative impact on throughput
and efficiency. Compared to this work, our design, in 128-bit
mode, can process 6 modular multiplications per cycle and
exhibits much higher throughput. Though our design takes
more area and has a lower frequency, it achieves a 5.8×
enhancement in efficiency than [36]. While in 256-bit mode,
our design can process 2 modular multiplications per cycle and
realizes an enhancement by 7.0×. In 384-bit mode, our design
can only complete one modular multiplication per cycle, but
the efficiency is still relatively high. More importantly, this
flexibility in bit-width configuration caters to the diverse needs
of privacy-preserving applications.

Our design occupies an area of 564.0 103µm2 and consumes
471.6 mW of dynamic power. In 128-bit mode, the pipeline
fills up after 6 clock cycles, subsequently generating six results
per cycle with a throughput of 750 Gbps. For 256-bit mode, the
first two results are generated after 12 clock cycles, achieving
a throughput of 500 Gbps. Similarly, in 384-bit mode, the
respective values are 17 clock cycles and 375 Gbps.

We also compare our proposed modular multiplier in dif-
ferent bit-widths with software-based implementation. Based
on Google Benchmark library [37], we benchmark the Mont-
gomery modular multiplication in ctbignum library [38] on a
platform with 2.6 GHz Intel Xeon Platinum 8358 processor
with 1TB memory. Only one thread is used in the test.
We use g++ compiler to compile the benchmark with -O2
and -O3 optimization, respectively. Based on this processor
and configuration, we run the 128-bit, 256-bit, and 384-
bit Montgomery modular multiplication. As shown in Table
III, we provide results in terms of the number of processed
modular multiplications per second on different platforms and
the speedup of our design with respect to CPU. In 128-bit
and 256-bit modes, our design can process 6 and 2 modular
multiplications per cycle in parallel. Under a 1GHz clock, 6,

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3410847

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 02,2024 at 08:23:09 UTC from IEEE Xplore. Restrictions apply.

9

TABLE II: Performance of reconfigurable modular multiplier

Design Library
Bit-

Width

Frequency

(MHz)

Area

(103um2)

Power

(mW)
Cycles

Throughput

(Gbps)

Efficiency

(Gbps/103um2)

Improvement

in Efficiency

[36]
TSMC

22 nm

128 1886 58.1 - 18 13.4 0.23 -

256 1785 200 - 18 25.4 0.127 -

Ours
TSMC

28 nm

128† 1000 564.0 471.6 1 750 1.33 5.8×
256† 1000 564.0 471.6 1 500 0.862 7.0×
384 1000 564.0 471.6 1 375 0.665 -

† In 128-bit and 256-bit modes, our design can process 6 and 2 modular multiplications in parallel per cycle,
respectively.

TABLE III: Comparison of modular multipliers on different
platforms. OP/s means one modular multiplier per second here.

Bit-

Width

CPU

(-O2)

CPU

(-O3)
Ours

Speedup

Ours/CPU(-O2) Ours/CPU(-O3)

128 68 MOP/s 98 MOP/s 6 GOP/s 88 61

256 23 MOP/s 37 MOP/s 2 GOP/s 87 54

384 10 MOP/s 19 MOP/s 1 GOP/s 100 53

2, and 1 billion modular multiplications in different modes are
processed by our implementation. Compared to software-based
implementation with -O2 optimization, our design achieves
87× to 100× speedup. While compared to -O3 optimized
software implementation, our design still achieves 53× to 61×
speedup.

C. Evaluation of Reconfigurable Pipelined Modular Multi-
plier on FPGA platform

We also implement our proposed fully pipelined modular
multiplier on XILINX XCVU9P and Virtex-6 FPGAs. Our
design on the FPGA platform is implemented in a similar way
as described in Section III and Section IV. When configured
in 128-bit mode, our design can complete 6 modular multi-
plications in parallel per cycle. While in 256-bit mode, it can
process 2 modular multiplications per cycle. In 384-bit mode,
it can only process one modular multiplication per cycle. The
empirical results are presented in Table IV. It is important to
note that the throughput and efficiency values for 256-bit and
128-bit modes are calculated assuming full capacity operation.

Table IV presents a more granular comparison of our
work with previous fully pipelined works. To ensure a fair
comparison, we introduce a metric of Equivalent Gates to
represent the equivalent gate count of LUTs and FFs. The
equivalent gates for 6-input LUTs and FFs are 15 [40] and 12
[41], respectively. The DSPs are also equivalently converted
into LUTs required to implement a single DSP multiplier
and finally represented by equivalent gates. In the XILINX
XCVU9P platform, one DSP can be equivalently expressed
as 485 LUTs. The performance of the modular multiplier is
evaluated across various metrics, including frequency (MHz),
latency (ns), throughput (Mbps), area (FFs, LUTs, DSPs, and
Equivalent Gates), and efficiency (Mbps/1K Gates).

Design in [21] implements a fully pipelined Montgomery
modular multiplier without supporting multiple bit-widths.
Suffering from the lower frequency, the efficiency of this
modular multiplier is low. Compared with [21], our implemen-
tation shows significant improvements. Our implementation
utilizes more resources but achieves a higher frequency and
can process 2 modular multiplications per cycle. Therefore,
it offers higher throughput. Specifically, our design provides
2.2× higher efficiency when compared to [21].

Design in [39] implements a low-latency modular multipli-
cation. However, despite consuming a much higher area, this
work does not offer ideal latency. In 128-bit mode, compared
with [39], our design exhibits an enhancement by 4.8× in
efficiency. While in 256-bit mode, our design exhibits an
enhancement by 8.5×.

Design in [9] implements a fully pipelined Montgomery
modular multiplier used in Multi-scalar multiplication (MSM).
This modular multiplier can only support one 384-bit modular
multiplication per cycle. Compared to this work, our imple-
mentation requires a larger area but achieves higher frequency
and throughput. The reconfigurable connection increases the
area, resulting in decreased efficiency. For a fixed-bit-width
design, as demonstrated in Table IV, due to the introduction of
truncated multipliers, the efficiency would be higher. Though
our design has lower efficiency compared to [9] but exhibits
higher flexibility, which is particularly valuable for ASIC
designs. This feature will significantly broaden its potential
applications.

The results presented in Table IV demonstrate that the use
of truncated multipliers has a significant impact on reducing
area and latency. This is important for effectively saving the
area and increasing the frequency of the proposed modular
multiplier.

D. Scalability Analysis of Architecture

In the above subsections, we discuss the performance of
the proposed reconfigurable modular multiplier and corre-
sponding architecture in different bit-width modes. To explore
the scalability of the proposed architecture, we scale up the
architecture to support larger bit-width. In the ZKP, 768-bit
is another most used bit-width, such as the MNT4753 curve.
According to the proposed method, we therefore implement
a larger reconfigurable modular multiplier supporting 768-
bit operands. At the same time, this modular multiplier can

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3410847

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 02,2024 at 08:23:09 UTC from IEEE Xplore. Restrictions apply.

10

TABLE IV: Comparison of pipelined Montgomery modular multiplier implementations on FPGA.

Device Design
Bit-

Width

Frequency

(MHz)

Latency

(ns)

Area Throughput

(Mbps)

Efficiency

(Mbps/1K Gates)

Improvement

in EfficiencyFFs LUTs DSPs Equivalent Gates

Virtex-6
[21] 256 68 14.7 - 187.9K 0 2818.5K 17408 6.18 -

Ours 256 † 127.6 7.8 37582 294.3K 0 4865.5K 65536 13.47 2.2×

XCVU9P

[39]
128 - 11.85 1472 24120 81 968.7K 10802 11.15 -

256 - 17.55 2952 87622 289 3452.2K 14587 4.23 -

[9] 384 250 4 46866 43144 324 3566.7K 96000 26.92 -

Ours

128 † 319 2.71 33143 47978 474 4565.7K 244992 53.66 4.8×
256 † 319 2.77 33143 47978 474 4565.7K 163328 35.77 8.5×
384 319 3.04 33143 47978 474 4565.7K 122496 26.83 0.99× ‡

384♯ 333 3.00 24373 33808 451 4080.6K 127872 31.3 1.16×
† In 128-bit and 256-bit modes, our design can process 6 and 2 modular multiplications in parallel per cycle, respectively.
‡ The efficiency is slightly lower due to resources introduced to support multiple bit-widths, while it exhibits more flexibility.
♯ Leveraging truncated multipliers, we also implement a fixed bit-width 384-bit modular multiplier.

also process 3-way 384-bit, 6-way 256-bit, and 20-way 128-
bit modular multiplications. Under the 1000 MHz clock, the
scaled-up modular multiplier, as shown in Fig. 8, improves the
throughput by 3.1× on average, in 128-bit, 256-bit, and 384-bit
modes. Synthesized under this clock, this modular multiplier
takes up 1818 103µm2 which scales up 3.2× compared to the
proposed modular multiplier. With 3.2× resources, the scaled-
up modular multiplier achieves almost the same improvement
in terms of throughput. Therefore, as shown in Fig. 8, the area
efficiency of the scaled-up modular multiplier is similar to that
of the proposed multiplier in the lower bit-width mode.

100 200 300 400 500 600 700 800
Bitwidth (Bit)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ef
fic

ie
nc

y
(G

bp
s/

10
3

m
)

500

1000

1500

2000

2500

Th
ro

ug
hp

ut
(G

bp
s)

3.1x Improvement
 in Throughput

(128, 750)

(256, 500)

(384, 375)

(128, 2500)

(256, 1500)

(384, 1125)

(768, 750)

Efficiency of Proposed Modular Multiplier
Efficiency of Scaled-up Modular Multiplier
Throughput of Proposed Modular Multiplier
Throughput of Scaled-up Modular Multiplier

Fig. 8: Throughput and efficiency in each bit-width mode of
proposed and scaled-up modular multiplier under 1000 MHz
clock.

TABLE V: Evaluation of NTT constructed by the proposed
reconfigurable modular multiplier.

Design Platform
Frequency

(MHz)

Area

(mm2)

Bit-

Width

Times(µs)

216 220

SAM [43]
Xilinx

Alveo U250
100

594K LUTs

6.7K DSPs
256 1240 12610

GZKP [44] GPU V100 - - 256 90 1070

PipeZK [6] UMC 28nm 300 15.04 256 281 11000

RPU [33] GF 12nm 1680 20.5 128 6.7 -

Ours TSMC 28nm

800 20.02 128 14.9 222.9

800 20.02 256 41.9 658.3

800 20.02 384 82.9 1313.7

E. Reconfigurable NTT Using Proposed Modular Multiplier

Based on the proposed reconfigurable modular multiplier,
we construct two reconfigurable SDC-structure-based [42]
NTT pipelines with variable bit-width support to benchmark
our work in real-world applications. Determined by the paral-
lelism of reconfigurable modular multiplier, each NTT pipeline
can process 6-lane 128-bit, 2-lane 256-bit, or 1-lane 384-
bit NTT in parallel. Two NTT pipelines therefore meet the
requirement of processing 12-lane 128-bit, 4-lane 256-bit, or
2-lane 384-bit NTT in parallel. The performance of our NTT
based on the proposed modular multiplier and both NTT works
based on FPGA, GPU, and ASIC are presented in Table V.

Compared to FPGA-based implementation in SAM [43],
our implementation has an obvious speedup that benefits from
the native frequency advantage of the ASIC platform. At the
same time, we retain some flexibility due to modular multi-
pliers with variable bit-width support. Based on the proposed
modular multipliers, the NTT here achieves 29.6× and 19.2×
speedups against SAM. Even compared to faster work GZKP
[44] implemented on GPU, our NTT still exhibits average
enhancement by 1.9×. Compared to the design in PipeZK [6]
which is synthesized using Synopsys’ Design Compiler (DC)

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3410847

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 02,2024 at 08:23:09 UTC from IEEE Xplore. Restrictions apply.

11

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Qm[15:0]

M [15:0]×

＋ Z [31:0]

Bit index

Fig. 9: The 16-bit MSB multiplier.

with UMC 28nm technology, we provide higher flexibility in
addition to obvious enhancements. For PipeZK, only one bit-
width is supported. In 128-bit mode, the NTT in RPU [33] is
synthesized using DC with advanced technology and achieves
higher frequency and better performance. If we scaled two
designs to the same frequency, our implementation would
have a similar throughput to RPU. Furthermore, our NTT can
support more bit-width modes.

VI. CONCLUSION

This paper presents a fully pipelined Montgomery modular
multiplier that supports variable bit-widths. The design allows
for flexible reconfiguration of computation units, including
FULL-Mults, LSB-Mults, MSB-Mults, adders, and shift reg-
isters, to meet different bit-width requirements. Our design
supports modular multiplication of 384-bit, 256-bit and 128-
bit. For small bit-width data such as 256-bit and 128-bit,
the design enables the processing of multiple sets of data in
parallel without wasting resources. The experimental results
demonstrate that the proposed modular multiplier has very
low latency and high throughput. Through the introduction
of LSB-Mults and MSB-Mults and employing a suitable KO
algorithm, we were able to efficiently reduce the area of the
design. The high throughput and flexibility of our design
provide efficient support for privacy-preserving computing
applications such as HE and ZKP.

VII. APPENDIX

As shown in Theorem 1, the word length of x0 (or y0) in
each level is k

2 − 1 or
⌊

R1

2l−1

⌋
. When k meets the Equation

7 and L is the number of recursive levels of MSB-Mult, the
word lengths of x0 (or y0) of each level are

R1 = 2L−1h+ 2L−1 − 1

R2 = 2L−2h+ 2L−2 − 1

· · ·
RL = 20h+ 20 − 1.

(12)

Under the assumption that all bits of omitted parts (x0 and
y0) are all 1, the maximum error, introduced by neglecting
x0y0, in each level is ∆1, ∆2, ∆3, and ∆L, respectively, as
shown in Equation 13.

∆1 = (2R1 − 1)2

∆2 = (2R2 − 1)2 ∗ 2R1 ∗ 2
∆3 = (2R3 − 1)2 ∗ 2R1+R2 ∗ 4
· · ·
∆L = (2RL − 1)2 ∗ 2R1+R2+···+RL−1 ∗ 2L−1.

(13)

Combining Equation 12 and Equation 13, we obtain the
maximum error ∆msb mult caused by MSB-Mult:

∆msb mult = ∆1 +∆2 +∆3 + · · ·+∆L

= L ∗ 22
L(h+1)−2 − 2(2

L−1)(h+1) + 1

= L ∗ 2k−2 − 2k−(h+1) + 1.

(14)

If the width of the correction word c is set as h + 1, the
maximum error introduced by discarding bits below the (k−c)-
th bit of Z is 2k−(h+1) − 1. Thus, we can find that

µ−µ̃ ⩽
∆msb mult + 2k−(h+1) − 1

2k
=

L ∗ 2k−2

2k
=

L

4
, (15)

where µ is (Z0+QmiM0)/2
k without error while µ̃ is coarse

result with error. Omitted parts in each recursive level are
impossible to be 0 in Montgomery algorithm, therefore, the
Equation 16 is true.

0 < µ− µ̃ ⩽ 1, L ∈ {1, 2, 3, 4}. (16)

Additionaly, the lower k bits of Z0 +QmiM0 are all zero.
Thus, we can obtain

⌊µ⌋ − ⌊µ̃⌋ = 1. (17)

We show an example here. A compact MSB multiplier
example, configured for k = 16 and L = 3, is depicted in
Fig. 9. Note that the number 1 in the figure only indicates
that this bit is calculated, while 0 indicates that the bit is not
computed. Based on Equation 7, R1, R2 and R3 are 7, 3 and

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3410847

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 02,2024 at 08:23:09 UTC from IEEE Xplore. Restrictions apply.

12

1, respectively. The orange area in the figure denotes the part
of the first level where no calculations are performed, while
the green area and blue area indicate the part without being
computed in level 2 and level 3, respectively. The maximum
errors introduced by each area and their sum are shown in
Equation 18

∆1 = (27 − 1)2

∆2 = (23 − 1)2 ∗ 27 ∗ 2
∆3 = (21 − 1)2 ∗ 27+3 ∗ 4
∆msb mult = ∆1 +∆2 +∆3

= 215 + 1.

(18)

The maximum error caused by discarding bits below (k−c)-
th bit of Z is 214 − 1. Hence, the maximum error in (Z +
QmM)/2k introduced by two terms is (214+215)/216 = 3/4.
Thus, we have

0 < µ− µ̃ ⩽
3

4
< 1. (19)

REFERENCES

[1] G. Danezis, C. Fournet, M. Kohlweiss, and B. Parno, “Pinocchio
coin: building zerocoin from a succinct pairing-based proof system,”
in Proceedings of the First ACM workshop on Language support for
privacy-enhancing technologies, 2013, pp. 27–30.

[2] A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, and B. Parno, “Cin-
derella: Turning shabby x. 509 certificates into elegant anonymous
credentials with the magic of verifiable computation,” in 2016 IEEE
Symposium on Security and Privacy (SP). IEEE, 2016, pp. 235–254.

[3] H. S. Galal and A. M. Youssef, “Verifiable sealed-bid auction on the
ethereum blockchain,” in Financial Cryptography and Data Security:
FC 2018 International Workshops, BITCOIN, VOTING, and WTSC,
Nieuwpoort, Curaçao, March 2, 2018, Revised Selected Papers 22.
Springer, 2019, pp. 265–278.

[4] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” in 2016 IEEE symposium on security and privacy (SP).
IEEE, 2016, pp. 839–858.

[5] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and
M. Virza, “Zerocash: Decentralized anonymous payments from bitcoin,”
in 2014 IEEE symposium on security and privacy. IEEE, 2014, pp.
459–474.

[6] Y. Zhang, S. Wang, X. Zhang, J. Dong, X. Mao, F. Long, C. Wang,
D. Zhou, M. Gao, and G. Sun, “Pipezk: Accelerating zero-knowledge
proof with a pipelined architecture,” in 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA). IEEE,
2021, pp. 416–428.

[7] C. F. Xavier, “Pipemsm: Hardware acceleration for multi-scalar
multiplication,” Cryptology ePrint Archive, Paper 2022/999, 2022,
https://eprint.iacr.org/2022/999. [Online]. Available: https://eprint.iacr.
org/2022/999

[8] N. Samardzic, A. Feldmann, A. Krastev, S. Devadas, R. Dreslinski,
C. Peikert, and D. Sanchez, “F1: A fast and programmable acceler-
ator for fully homomorphic encryption,” in MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, 2021, pp.
238–252.

[9] K. Aasaraai, D. Beaver, E. Cesena, R. Maganti, N. Stalder,
and J. Varela, “Fpga acceleration of multi-scalar multiplication:
Cyclonemsm,” Cryptology ePrint Archive, Paper 2022/1396, 2022,
https://eprint.iacr.org/2022/1396. [Online]. Available: https://eprint.iacr.
org/2022/1396

[10] R. L. Rivest, L. Adleman, M. L. Dertouzos et al., “On data banks and
privacy homomorphisms,” Foundations of secure computation, vol. 4,
no. 11, pp. 169–180, 1978.

[11] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
Proceedings of the forty-first annual ACM symposium on Theory of
computing, 2009, pp. 169–178.

[12] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of computation,
vol. 48, no. 177, pp. 203–209, 1987.

[13] V. S. Miller, “Use of elliptic curves in cryptography,” in Conference on
the theory and application of cryptographic techniques. Springer, 1985,
pp. 417–426.

[14] S. Lab, “libsnark: A c++ library for zksnark proofs,” 2018,
https://github.com/scipr-lab/libsnark. [Online]. Available: https://github.
com/scipr-lab/libsnark

[15] P. Barrett, “Implementing the rivest shamir and adleman public key en-
cryption algorithm on a standard digital signal processor,” in Conference
on the Theory and Application of Cryptographic Techniques. Springer,
1986, pp. 311–323.

[16] P. L. Montgomery, “Modular multiplication without trial division,”
Mathematics of computation, vol. 44, no. 170, pp. 519–521, 1985.

[17] Y. Kong and B. Phillips, “Comparison of montgomery and barrett
modular multipliers on fpgas,” in 2006 Fortieth Asilomar Conference
on Signals, Systems and Computers, 2006, pp. 1687–1691.

[18] S. Kim, K. Lee, W. Cho, J. H. Cheon, and R. A. Rutenbar, “Fpga-
based accelerators of fully pipelined modular multipliers for homomor-
phic encryption,” in 2019 International Conference on ReConFigurable
Computing and FPGAs (ReConFig). IEEE, 2019, pp. 1–8.

[19] M. Langhammer and B. Pasca, “Efficient fpga modular multiplication
implementation,” in The 2021 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, 2021, pp. 217–223.

[20] A. F. Tenca and Ç. K. Koç, “A scalable architecture for modular
multiplication based on montgomery’s algorithm,” IEEE Transactions
on computers, vol. 52, no. 9, pp. 1215–1221, 2003.

[21] R. Liu and S. Li, “A design and implementation of montgomery modular
multiplier,” in 2019 IEEE International Symposium on Circuits and
Systems (ISCAS). IEEE, 2019, pp. 1–4.

[22] A. F. Tenca and Ç. K. Koç, “Scalable methods and apparatus for
montgomery multiplication,” May 16 2006, uS Patent 7,046,800.

[23] B. Zhang, Z. Cheng, and M. Pedram, “High-radix design of a scalable
montgomery modular multiplier with low latency,” IEEE Transactions
on Computers, vol. 71, no. 2, pp. 436–449, 2021.

[24] A. A. Abd-Elkader, M. Rashdan, E.-S. A. Hasaneen, and H. F. Hamed,
“Fpga-based optimized design of montgomery modular multiplier,”
IEEE Transactions on Circuits and Systems II: express briefs, vol. 68,
no. 6, pp. 2137–2141, 2020.

[25] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and
M. Virza, “Zerocash: Decentralized anonymous payments from bitcoin,”
in 2014 IEEE symposium on security and privacy. IEEE, 2014, pp.
459–474.

[26] S. Steffen, B. Bichsel, R. Baumgartner, and M. Vechev, “Zeestar:
Private smart contracts by homomorphic encryption and zero-knowledge
proofs,” in 2022 IEEE Symposium on Security and Privacy (SP), 2022,
pp. 179–197.

[27] R. Wang, Y. Tang, X. Pei, S. Guo, and F. Zhang, “Block-chain privacy
protection scheme based on lightweight homomorphic encryption and
zero-knowledge proof,” Computer Science, vol. 48, no. S2, pp. 547–
551, 2021.

[28] B. Zhang, G. Lu, P. Qiu, X. Gui, and Y. Shi, “Advancing federated
learning through verifiable computations and homomorphic encryption,”
Entropy, vol. 25, no. 11, p. 1550, 2023.

[29] G. R. Rao, H. Ghanimi, V. Ramachandran, D. Al-Qahtani, P. Dadheech,
and S. Sengan, “Enhanced security in federated learning by integrat-
ing homomorphic encryption for privacy-protected, collaborative model
training,” Journal of Discrete Mathematical Sciences and Cryptography,
vol. 27, pp. 361–370, 01 2024.

[30] S. Lu, J. Zheng, Z. Cao, Y. Wang, and C. Gu, “A survey on cryptographic
techniques for protecting big data security: present and forthcoming,”
Science China Information Sciences, vol. 65, no. 10, p. 201301, 2022.

[31] J. Zhao, H. Zhu, F. Wang, R. Lu, H. Li, Z. Zhou, and H. Wan, “Accel:
An efficient and privacy-preserving federated logistic regression scheme
over vertically partitioned data,” Science China. Information Sciences,
vol. 65, no. 7, p. 170307, 2022.

[32] M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov,
S. Halevi, J. Hoffstein, K. Laine, K. Lauter et al., “Homomorphic en-
cryption standard,” Protecting privacy through homomorphic encryption,
pp. 31–62, 2021.

[33] D. Soni, N. Neda, N. Zhang, B. Reynwar, H. Gamil, B. Heyman,
M. Nabeel, A. Al Badawi, Y. Polyakov, K. Canida et al., “Rpu:
The ring processing unit,” in 2023 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). IEEE, 2023,
pp. 272–282.

[34] M. Nabeel, D. Soni, M. Ashraf, M. A. Gebremichael, H. Gamil,
E. Chielle, R. Karri, M. Sanduleanu, and M. Maniatakos, “Cofhee: A co-
processor for fully homomorphic encryption execution,” in 2023 Design,

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3410847

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 02,2024 at 08:23:09 UTC from IEEE Xplore. Restrictions apply.

13

Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2023, pp. 1–2.

[35] P. L. Montgomery, “Five, six, and seven-term karatsuba-like formulae,”
IEEE Transactions on Computers, vol. 54, no. 3, pp. 362–369, 2005.

[36] O. Mazonka, E. Chielle, D. Soni, and M. Maniatakos, “Fast and compact
interleaved modular multiplication based on carry save addition,” in
2022 IEEE/ACM International Conference On Computer Aided Design
(ICCAD), 2022, pp. 1–9.

[37] H. F. Eric, Dominic, “Google benchmark - a library to support the bench-
marking of functions,” https://github.com/google/benchmark, 2024.

[38] N. J. Bouman, “Multiprecision arithmetic for cryptology in C++ -
compile-time computations and beating the performance of hand-
optimized assembly at run-time,” CoRR, vol. abs/1804.07236, 2018.
[Online]. Available: http://arxiv.org/abs/1804.07236

[39] E. Öztürk, “Design and implementation of a low-latency modular
multiplication algorithm,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 67, no. 6, pp. 1902–1911, 2020.

[40] I. Cadence Design Systems, “Asic prototyping simplified,” [Online],
https://www.cadence.com/content/dam/cadence-www/global/en US/
documents/tools/pcb-design-analysis/asic-prototyping-tp.pdf.

[41] “Gate count capacity metrics for fpgas,” 1997. [Online]. Available:
https://api.semanticscholar.org/CorpusID:13161763

[42] A. Cortes, I. Velez, and J. F. Sevillano, “Radix rk ffts: Matricial
representation and sdc/sdf pipeline implementation,” IEEE Transactions
on Signal Processing, vol. 57, no. 7, pp. 2824–2839, 2009.

[43] C. Wang and M. Gao, “Sam: A scalable accelerator for number theoretic
transform using multi-dimensional decomposition,” in 2023 IEEE/ACM
International Conference on Computer Aided Design (ICCAD), 2023,
pp. 1–9.

[44] W. Ma, Q. Xiong, X. Shi, X. Ma, H. Jin, H. Kuang, M. Gao, Y. Zhang,
H. Shen, and W. Hu, “Gzkp: A gpu accelerated zero-knowledge proof
system,” ser. ASPLOS 2023. New York, NY, USA: Association
for Computing Machinery, 2023, p. 340–353. [Online]. Available:
https://doi.org/10.1145/3575693.3575711

Hao Zhou received the B.S. degree in Electronic
Science and Technology from Jilin University, Jilin,
China, in 2017 and the M.S. degree in Electronics
and Communication Engineering from University of
Chinese Academy of Sciences, Beijing, China, in
2020. He is currently working toward the Ph.D de-
gree in Electronic and Information Engineering with
the School of Microelectronics, Fudan University,
Shanghai, China. His research interests include ze-
roknowledge proof, fully homomorphism encryption
and VLSI implementation of digital systems.

Changxu Liu received the B.S. degree in Microelec-
tronics Science and Engineering from Wuhan Uni-
versity, Wuhan, China, in 2022. He is currently pur-
suing the Ph.D degree with the State Key Laboratory
of Integrated Chips and Systems, School of Micro-
electronics, Fudan University, Shanghai, China. His
current research interests include hardware-software
Co-design for privacy-preserving computing appli-
cations and digital IC design.

Lan Yang received the B.S. degree in Microelec-
tronic Science and Engineeringy from Fudan Uni-
versity, Shanghai, China, in 2023. She is currently
pursuing the Ph.D degree with the State Key Lab-
oratory of Integrated Chips and Systems, School
of Microelectronics, Fudan University, Shanghai,
China. Her research interests include homomorphic
encryption in privacy-preserving technologies and
hardware acceleration.

Li Shang (Member, IEEE) received the Ph.D. degree
from Princeton University, Princeton, NJ, USA. He
was the Deputy Director and Chief Architect of
Intel Labs China, and an Associate Professor of
CUBoulder, Boulder, CO, USA. He is a Profes-
sor with the School of Computer Science, Fudan
University, Shanghai, China. His research interests
include computer systems, human-centered comput-
ing, machinelearning, VLSI and EDA, with over
100 publications, multiple best paper awards, and
nominations. Dr. Shang was a recipient of the NSF

Career Award.

Fan Yang (Member, IEEE) received the B.S. degree
from Xi’an Jiaotong University, Xi’an, China, in
2003, and the Ph.D. degree from Fudan University,
Shanghai, China, in 2008. He is currently a Full
Professor with the Microelectronics Department, Fu-
dan University. His research interests include model
order reduction, circuit simulation, high-level syn-
thesis, acceleration of artificial neural networks,
acceleration of privacy-preserving computing, and
yield analysis and design for manufacturability.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3410847

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on September 02,2024 at 08:23:09 UTC from IEEE Xplore. Restrictions apply.

